Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 078104    DOI: 10.1088/1674-1056/ab8abb
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy

Qingyu Zhang(张庆宇)1,2, Dongke Sun(孙东科)3, Shunhu Zhang(章顺虎)1, Hui Wang(王辉)4, Mingfang Zhu(朱鸣芳)2
1 Shagang School of Iron and Steel, Soochow University, Suzhou 215137, China;
2 Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China;
3 Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China;
4 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Abstract  We simulate the evolution of hydrogen concentration and gas pore formation as equiaxed dendrites grow during solidification of a hypoeutectic aluminum-silicon (Al-Si) alloy. The applied lattice Boltzmann-cellular automaton-finite difference model incorporates the physical mechanisms of solute and hydrogen partitioning on the solid/liquid interface, as well as the transports of solute and hydrogen. After the quantitative validation by the simulation of capillary intrusion, the model is utilized to investigate the growth of the equiaxed dendrites and hydrogen porosity formation for an Al-(5 wt.%)Si alloy under different solidification conditions. The simulation data reveal that the gas pores favorably nucleate in the corners surrounded by the nearby dendrite arms. Then, the gas pores grow in a competitive mode. With the cooling rate increasing, the competition among different growing gas pores is found to be hindered, which accordingly increases the pore number density in the final solidification microstructure. In the late solidification stage, even though the solid fraction is increasing, the mean concentration of hydrogen in the residue melt tends to be constant, corresponding to a dynamic equilibrium state of hydrogen concentration in liquid. As the cooling rate increases or the initial hydrogen concentration decreases, the temperature of gas pore nucleation, the porosity fraction, and the mean porosity size decrease, whilst the mean hydrogen concentration in liquid increases in the late solidification stage. The simulated data present identical trends with the experimental results reported in literature.
Keywords:  microporosity      solidification microstructure      modeling      lattice Boltzmann method  
Received:  23 December 2019      Revised:  04 March 2020      Accepted manuscript online: 
PACS:  81.05.Bx (Metals, semimetals, and alloys)  
  81.30.-t (Phase diagrams and microstructures developed by solidification and solid-solid phase transformations)  
  47.55.D- (Drops and bubbles)  
  47.61.Jd (Multiphase flows)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51901148), the Fund of the State Key Laboratory of Solidification Processing (Northwestern Polytechnical University), China (Grant No. SKLSP202006), and the State Key Lab of Advanced Metals and Materials (University of Science and Technology Beijing), China (Grant No. 2019-Z15).
Corresponding Authors:  Qingyu Zhang, Mingfang Zhu     E-mail:  qingyu.zhang@suda.edu.cn;zhumf@seu.edu.cn

Cite this article: 

Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳) Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy 2020 Chin. Phys. B 29 078104

[1] Kurz W, Fisher D J and Trivedi R 2019 Inter. Mater. Rev. 64 311
[2] Ding Z, Hu Q, Lu W, Ge X, Cao S, Sun S, Yang T, Xia M and Li J 2019 J. Mater. Sci. Technol. 35 1388
[3] Yamamoto T and Komarov S V 2019 Int. J. Cast Met. Res. 32 266
[4] Stefanescu D M 2005 Int. J. Cast Met. Res. 18 129
[5] Xing H, Wang J, Chen C, Shen Z and Zhao C 2012 J. Cryst. Growth 338 256
[6] Huang W D and Wang L L 2012 Sci. Chin. Technol. Sci. 55 377
[7] Sun S, Hu Q, Lu W, Ding Z, Xia M and Li J 2018 Metall. Mater. Trans. A 49 4429
[8] Khalajzadeh V, Goettsch D D and Beckermann C 2019 Metall. Mater. Trans. A 50 757
[9] Bahmani A, Hatami N, Varahram N, Davami P and Shabani M O 2013 Int. J. Adv. Manuf. Technol. 64 1313
[10] Gao Z M, Jie W Q, Liu Y Q, Zheng Y J and Luo H J 2019 J. Alloy. Compd. 797 514
[11] Bhagavath S, Cai B, Atwood R, Li M, Ghaffari B, Lee P D and Karagadde S 2019 Metall. Mater. Trans. A 50 4891
[12] Gao Z, Jie W, Liu Y and Luo H 2017 Acta Mater. 127 277
[13] Zhu M and Stefanescu D 2007 Acta Mater. 55 1741
[14] Xing H, Ankit K, Dong X, Chen H and Jin K 2018 Int. J. Heat Mass Transfer 117 1107
[15] Xing H, Ji M, Dong X, Wang Y, Zhang L and Li S 2020 Mater. Design 185 108250
[16] Meidani H, Jacot A and Rappaz M 2015 Metall. Mater. Trans. A 46 23
[17] Du L, Wang L, Zheng B and Du H 2016 Comput. Mater. Sci. 114 94
[18] Gu C, Wei Y, Yu F, Liu X and She L 2017 Metall. Mater. Trans. A 48 4314
[19] Savithri S and Sasikumar R 2018 Trans. Indian Inst. Met. 71 2657
[20] Hu Y, Xie J, Liu Z, Ding Q, Zhu W, Zhang J and Zhang W 2018 Comput. Mater. Sci. 142 244
[21] Zhang Q, Wang T, Yao Z and Zhu M 2018 Materialia 4C 211
[22] Chen L, Kang Q, Mu Y, He Y L and Tao W Q 2014 Int. J. Heat Mass Transfer 76 210
[23] Li Q, Luo K H, Kang Q J and Chen Q 2014 Phys. Rev. E 90 053301
[24] Li Q, Yu Y, Zhou P and Yan H J 2018 Appl. Therm. Eng. 132 490
[25] Zhang Q, Sun D, Zhang Y and Zhu M 2014 Langmuir 30 12559
[26] Wu W, Zhu M F, Sun D K, Dai T, Han Q Y and Raabe D 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33 012103
[27] Sun D, Zhu M, Wang J and Sun B 2016 Int. J. Heat Mass Transfer 94 474
[28] Nabavizadeh S, Eshraghi M and Felicelli S 2019 Appl. Sci. 9 57
[29] Zhang Q, Sun D, Pan S and Zhu M 2020 Int. J. Heat Mass Transfer 146 118838
[30] Chai Z, Sun D, Wang H and Shi B 2018 Int. J. Heat Mass Transfer 122 631
[31] Chai Z, Liang H, Du R and Shi B 2019 SIAM J. Sci. Comput. 41 B746
[32] Liu H, Ju Y, Wang N, Xi G and Zhang Y 2015 Phys. Rev. E 92 033306
[33] Carlson K D, Lin Z and Beckermann C 2007 Metall. Mater. Trans. B 38 541
[34] Samuel A M and Samuel F H 1993 Metall. Trans. A 24 1857
[1] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[2] Design and management of lithium-ion batteries: A perspective from modeling, simulation, and optimization
Qian-Kun Wang(王乾坤), Jia-Ni Shen(沈佳妮), Yi-Jun He(贺益君), Zi-Feng Ma(马紫峰). Chin. Phys. B, 2020, 29(6): 068201.
[3] Dark count in single-photon avalanche diodes: A novel statistical behavioral model
Wen-Juan Yu(喻文娟), Yu Zhang(张钰), Ming-Zhu Xu(许明珠), Xin-Miao Lu(逯鑫淼). Chin. Phys. B, 2020, 29(4): 048503.
[4] Overview of finite elements simulation of temperature profile to estimate properties of materials 3D-printed by laser powder-bed fusion
Habimana Jean Willy, Xinwei Li(李辛未), Yong Hao Tan, Zhe Chen(陈哲), Mehmet Cagirici, Ramadan Borayek, Tun Seng Herng, Chun Yee Aaron Ong, Chaojiang Li(李朝将), Jun Ding(丁军). Chin. Phys. B, 2020, 29(4): 048101.
[5] General principles to high-throughput constructing two-dimensional carbon allotropes
Qing Xie(谢庆), Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2020, 29(3): 037306.
[6] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[7] Quantitative modeling of bacterial quorum sensing dynamics in time and space
Xiang Li(李翔), Hong Qi(祁宏), Xiao-Cui Zhang(张晓翠), Fei Xu(徐飞), Zhi-Yong Yin(尹智勇), Shi-Yang Huang(黄世阳), Zhao-Shou Wang(王兆守)†, and Jian-Wei Shuai(帅建伟)‡. Chin. Phys. B, 2020, 29(10): 108702.
[8] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[9] A computational study of the chemokine receptor CXCR1 bound with interleukin-8
Yang Wang(王洋), Cecylia Severin Lupala, Ting Wang(王亭), Xuanxuan Li(李选选), Ji-Hye Yun, Jae-hyun Park, Zeyu Jin(金泽宇), Weontae Lee, Leihan Tan(汤雷翰), Haiguang Liu(刘海广). Chin. Phys. B, 2018, 27(3): 038702.
[10] A generalized model of TiOx-based memristive devices andits application for image processing
Jiangwei Zhang(张江伟), Zhensen Tang(汤振森), Nuo Xu(许诺), Yao Wang(王耀), Honghui Sun(孙红辉), Zhiyuan Wang(王之元), Liang Fang(方粮). Chin. Phys. B, 2017, 26(9): 090502.
[11] A damping boundary condition for atomistic-continuum coupling
Jie Zhang(张杰), Kiet Tieu, Guillaume Michal, Hongtao Zhu(朱洪涛), Liang Zhang(张亮), Lihong Su(苏利红), Guanyu Deng(邓关宇), Hui Wang(王辉). Chin. Phys. B, 2017, 26(6): 068702.
[12] Effects of time delays in a mathematical bone model
Li-Fang Wang(王莉芳), Kang Qiu(仇康), Ya Jia(贾亚). Chin. Phys. B, 2017, 26(3): 030503.
[13] A diffusion model for solute atoms diffusing and aggregating in nuclear structural materials
Quan Song(宋泉), Fan-Xin Meng(孟繁新), Bo-Yuan Ning(宁博元), Jun Zhuang(庄军), Xi-Jing Ning(宁西京). Chin. Phys. B, 2017, 26(12): 126601.
[14] Modeling of LiFePO4 battery open circuit voltage hysteresis based on recursive discrete Preisach model
Wei-Yi Sun(孙维毅), Hai-Tao Min(闵海涛), Dong-Ni Guo(郭冬妮), Yuan-Bin Yu(于远彬). Chin. Phys. B, 2017, 26(12): 127503.
[15] Sampled-data modeling and dynamical effect of output-capacitor time-constant for valley voltage-mode controlled ewline buck-boost converter
Shu-Han Zhou(周述晗), Guo-Hua Zhou(周国华), Shao-Huan Zeng(曾绍桓), Min-Rui Leng(冷敏瑞), Shun-Gang Xu(徐顺刚). Chin. Phys. B, 2017, 26(11): 118401.
No Suggested Reading articles found!