Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 127306    DOI: 10.1088/1674-1056/22/12/127306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Post-annealing effect on the structural and mechanical properties of multiphase zirconia films deposited by a plasma focus device

I. A. Khana, R. S. Rawatb, R. Ahmadc, M. A. K. Shahida
a Department of Physics, Government College University, 38000 Faisalabad, Pakistan;
b National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore;
c Department of Physics, GC University, 54000 Lahore, Pakistan
Abstract  Nanostructured multiphase zirconia films (MZFs) are deposited on Zr substrate by the irradiation of energetic oxygen ions emanated from a plasma focus device. The oxygen operating gas pressure of 1 mbar (1 bar=105 Pa) provides the most appropriate ion energy flux to deposit crystalline ZrO2 films. X-ray diffraction (XRD) patterns reveal the formation of polycrystalline ZrO2 films. The crystallite size (CS), crystal growth, and dislocation densities are attributed to increasing focus shots, sample axial distances, and working gas pressures. Phase and orientation transformations from t-ZrO2 to m-ZrO2 and c-ZrO2 are associated with increasing focus shots and continuous annealing. For lower (200 ℃) annealing temperature (AT), full width at half maximum (FWHM) of diffraction peak, CS, and dislocation density (δ) for (020) plane are found to be 0.494, 16.6 nm, and 3.63×10-3 nm-2 while for higher (400 ℃) AT, these parameters for (111) plane are found to be 0.388, 20.87 nm, and 2.29×10-3 nm-2, respectively. Scanning electron microscope (SEM) results demonstrate the formation of rounded grains with uniform distribution. The estimated values of atomic ratio (O/Zr) in ZrO2 films deposited for different axial distances (6 cm, 9 cm, and 12 cm) are found to be 2.1, 2.2, and 2.3, respectively. Fourier transform infrared (FTIR) analysis reveals that the bands appearing at 441 cm-1 and 480 cm-1 belong to m-ZrO2 and t-ZrO2 phases, respectively. Maximum microhardness (8.65±0.45 GPa) of ZrO2 film is ~ 6.7 times higher than the microhardness of virgin Zr.
Keywords:  zrconia      phase transformation      XRD      SEM      Fourier transform infrared analysis  
Received:  27 March 2013      Revised:  14 May 2013      Accepted manuscript online: 
PACS:  73.50.Lw (Thermoelectric effects)  
  68.60.Bs (Mechanical and acoustical properties)  
  68.55.J- (Morphology of films)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Project supported by the Higher Education Commission of Pakistan.
Corresponding Authors:  I. A. Khan     E-mail:  ejaz_phd@yahoo.com

Cite this article: 

I. A. Khan, R. S. Rawat, R. Ahmad, M. A. K. Shahid Post-annealing effect on the structural and mechanical properties of multiphase zirconia films deposited by a plasma focus device 2013 Chin. Phys. B 22 127306

[1] Garvie R C, Hannink R H and Pascoe R T 1975 Nature 258 703
[2] Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243
[3] Wright P K and Evans A G 1999 Solid State Mater. Sci. 4 255
[4] Zhou X, Balachov I and Macdonald D D 1998 Corros. Sci. 40 1349
[5] Nguyen T and Djurado E 2001 Solid State Ion. 138 191
[6] Perkins C M, Triplett B B, Mclntyre P C, Saraswat K C, Haukka S and Tuominen M 2001 Appl. Phys. Lett. 78 2357
[7] Zhao X and Vanderbilt D 2002 Phys. Rev. B 65 075105
[8] Zhao X and Vanderbilt D 2005 Phys. Rev. B 71 085107
[9] Hwang S M, Lee S M, Park K, Lee M S, Joo J, Lim J H, Kim H, Yoon J J and Kim Y D 2011 Appl. Phys. Lett. 98 022903
[10] Panda D and Tseng T-Y 2013 Thin Solid Films 531 1
[11] Piconi C and Maccauro G 1999 Biomaterials 20 1
[12] Namavar F, Wang G, Cheung C L, Sabirianov R, Zeng X C, Mei W N, Bai J, Brewer J R, Haider H and Garvin K L 2007 Nanotechnology 18 415702
[13] Sattonnay G and Thome L 2006 J. Nucl. Mater. 348 223
[14] Chraska T, King A H and Berndt C C 2000 Mater. Sci. Eng. A 286 169
[15] Aguilar D H, Torres-Gonzalez L C, Torres-Martinez L M, Lopez T and Quintana P 2000 J. Solid State Chem. 158 349
[16] Lee S, Tou T Y, Moo S P, Eissa M A, Gholap A V, Kwek K W, Mulyodrono S, Smith A J, Suryadi S, Usada W and Zakaullah M 1988 Am. J. Phys. 56 62
[17] Ahmad R, Sadiq M, Hussain S, Shafiq M, Zakaullah M and Waheed A 2006 Rev. Sci. Instrum. 77 013504
[18] Bhuyan H, Favre M, Valderrama E, Chuaqui H and Wyndham E 2006 J. Phys. D: Appl. Phys. 39 3596
[19] Rawat R S, Srivastava M P, Tandon S and Mansingh A 1993 Phys. Rev. B 47 4858
[20] Rawat R S, Arun P, Videshwar A G, Lam Y L, Lee P, Liu M H, Lee S and Huan A C H 2000 Mater. Res. Bull. 35 477
[21] Rawat R S, Arun P, Videshwar A G, Lee P and Lee S 2004 J. Appl. Phys. 95 7725
[22] Borthakur T K, Sahu A, Mohanty S R, Nayak B B and Acharya B S 1999 Surf. Eng. 15 55
[23] Gupta R and Srivastava M P 2004 Plasma Sour. Sci. Technol. 13 371
[24] Kant C R, Srivastava M P and Rawat R S 1997 Phys. Lett. A 226 212
[25] Rawat R S, Lee P, White T, Ling L and Lee S 2001 Surf. Coat. Technol. 138 159
[26] Hassan M, Qayyum A, Ahmad R, Murtaza G and Zakaullah M 2007 J. Phys. D: Appl. Phys. 40 769
[27] Khan I A, Hassan M, Ahmad R, Qayyum A, Murtaza G, Zakaullah M and Rawat R S 2008 Thin Solid Films 516 8255
[28] Khan I A, Hassan M, Ahmad R, Murtaza G, Zakaullah M, Rawat R S and Lee P 2008 Int. J. Mod. Phys. B 22 3941
[29] Khan I A, Hassan M, Hussain T, Ahmad R, Zakaullah M and Rawat R S 2009 Appl. Surf. Sci. 255 6132
[30] Nayak B B, Acharya B S, Mohanty S R, Borthakur T K and Bhuyan H 2001 Surf. Coat. Technol. 145 8
[31] Ahmad R, Hassan M, Murtaza G, Akhter J I, Qayyum A, Waheed A and Zakaullah M 2006 Rad. Eff. Deff. Solids 161 121
[32] Choi P, Deeney C, Herold H and Wong C S 1990 Laser Part. Beams 8 469
[33] Sadowski M, Schmidt H and Herold H 1981 Phys. Lett. A 83 435
[34] Williamson G B and Smallman R C 1956 Philos. Mag. 1 34
[35] Wang X S, Wu Z C, Webb J F and Liu Z G 2003 Appl. Phys. A 77 561
[36] Khan Z R, Zulfequar M and Khan M S 2010 Mater. Sci. Eng. B 174 145
[37] Khan Z R, Khan Mohd Shoeb, Zulfequar M and Khan Mohd Shahid 2011 Mater. Sci. Appl. 2 340
[38] Kelly H, Lepone A and Marquez A 1998 IEEE Trans. Plasma Sci. 26 113
[39] Nunomura S, Koga K and Shitarani M 2005 Jpn. J. Appl. Phys. Part Ⅱ 44 L1509
[40] Lee S and Saw S H 2012 Phys. Plasmas 19 112703
[41] Sadiq M, Shafiq M, Ahmad W, Ahmad R and Zakaullah M 2006 Phys. Lett. A 352 150
[42] Tian G, Huang J, Wang T, He H and Shao J 2005 J. Appl. Surf. Sci. 239 201
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[3] A simple semiempirical model for the static polarizability of electronically excited atoms and molecules
Alexander S Sharipov, Alexey V Pelevkin, and Boris I Loukhovitski. Chin. Phys. B, 2023, 32(4): 043301.
[4] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[5] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[8] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[9] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[10] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[11] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[12] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[13] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[14] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[15] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
No Suggested Reading articles found!