|
|
Implementation of quantum partial search with superconducting quantum interference device qudits in cavity QED |
Li Hong-Yi (李虹轶), Wu Chun-Wang (吴春旺), Chen Yu-Bo (陈玉波), Lin Yuan-Gen (林源根), Chen Ping-Xing (陈平形), Li Cheng-Zu (李承祖) |
College of Science, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract We present a method to implement the quantum partial search of the database separated into any number of blocks with qudits, D-level quantum systems. Compared with the partial search using qubits, our method needs fewer iteration steps and uses the carriers of the information more economically. To illustrate how to realize the idea with concrete physical systems, we propose a scheme to carry out a twelve-dimensional partial search of the database partitioned into three blocks with superconducting quantum interference devices (SQUIDs) in cavity QED. Through the appropriate modulation of the amplitudes of the microwave pulses, the scheme can overcome the non-identity of the cavity–SQUID coupling strengths due to the parameter variations resulting from the fabrication processes. Numerical simulation under the influence of the cavity and SQUID decays shows that the scheme could be achieved efficiently within current state-of-the-art technology.
|
Received: 05 June 2013
Revised: 08 August 2013
Accepted manuscript online:
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
85.25.Dq
|
(Superconducting quantum interference devices (SQUIDs))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10774192). |
Corresponding Authors:
Li Hong-Yi
E-mail: hongyili@nudt.edu.cn
|
Cite this article:
Li Hong-Yi (李虹轶), Wu Chun-Wang (吴春旺), Chen Yu-Bo (陈玉波), Lin Yuan-Gen (林源根), Chen Ping-Xing (陈平形), Li Cheng-Zu (李承祖) Implementation of quantum partial search with superconducting quantum interference device qudits in cavity QED 2013 Chin. Phys. B 22 110305
|
[1] |
Grover L K 1997 Phys. Rev. Lett. 79 325
|
[2] |
Zalka C 1999 Phys. Rev. A 60 2746
|
[3] |
Korepin V E and Grover L K 2006 Quantum Info. Process. 5 5
|
[4] |
Korepin V E 2005 J. Phys. A: Math. Gen. 38 L731
|
[5] |
Grover L K and Radhakrishnan J 2005 ACM Symposium on Parallel Algorithms and Architectures, July 18, 2005 Las Vegas, Nevada, USA
|
[6] |
Korepin V E and Grover L K 2006 Quantum Info. Process. 5 5
|
[7] |
Korepin V E and Vallilo B C 2006 Prog. Theor. Phys. 116 783
|
[8] |
Choi B S,Walker T A and Braunstein S L 2007 Quantum Info. Process. 6 1
|
[9] |
Li H Y, Wu C W, Liu W T, Chen P X and Li C Z 2011 Phys. Lett. A 375 4249
|
[10] |
Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786
|
[11] |
Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357
|
[12] |
Orlando T P, Mooij J E, Tian L, van der Wal C H, Levitov L, Lloyd S and Mazo J J 1999 Phys. Rev. B 60 15398
|
[13] |
Chiorescu I, Bertet P, Semba K, Nakamura Y, Harmans C J P M and Mooij J E 2004 Nature 431 159
|
[14] |
Shnirman A, Schön G and Hermon Z 1997 Phys. Rev. Lett. 79 2371
|
[15] |
Steinbach A, Joyez P, Cottet A, Esteve D, Devoret M H, Huber M E and Martinis J M 2001 Phys. Rev. Lett. 87 137003
|
[16] |
Blais A and Zagoskin A M 2000 Phys. Rev. A 61 042308
|
[17] |
Zhao N, Liu J S, Li T F and Chen W 2013 Acta Phys. Sin. 62 010301 (in Chinese)
|
[18] |
Plantenberg J H, Groot P C D, Harmans C J P M and Mooij J E 2007 Nature 447 836
|
[19] |
Wu Y L, Deng H, Huang K Q, Tian Y, Yu H F, Xue G M, Jin Y R, Li J, Zhao S P and Zheng D N 2013 Chin. Phys. B 22 090312
|
[20] |
Yu Y, Han S, Chu X, Chu S I and Wang Z 2002 Science 296 889
|
[21] |
Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2002 Science 296 886
|
[22] |
Yang C P, Chu S I and Han S 2004 Phys. Rev. Lett. 92 117902
|
[23] |
Feng M 2001 Phys. Rev. A 63 052308
|
[24] |
He X L, Yang C P, Li S, Luo J Y and Han S 2010 Phys. Rev. A 82 024301
|
[25] |
Song K H, Xiang S H, Liu Q and Lu D H 2007 Phys. Rev. A 75 032347
|
[26] |
Waseem M, Irfan M and Qamar S 2012 Physica C 477 24
|
[27] |
Han S, Rouse R and Lukens J E 1996 Phys. Rev. Lett. 76 3404
|
[28] |
Yang C P, Chu S I and Han S 2004 Phys. Rev. Lett. 92 117902
|
[29] |
Song K H 2006 Chin. Phys. B 15 0286
|
[30] |
Shao X Q, Chen L, Zhang S and Zhao Y F 2009 Chin. Phys. B 18 5161
|
[31] |
Gamel O and James D F V 2010 Phys. Rev. A 82 052106
|
[32] |
Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
|
[33] |
Duan L M, Kuzmich A and Kimble H J 2003 Phys. Rev. A 67 032305
|
[34] |
Deng Z J, Gao K L and Feng M 2006 Phys. Rev. A 74 064303
|
[35] |
Xiao Y F, Zou X B and Guo G C 2007 Phys. Rev. A 75 014302
|
[36] |
França Santos M, Solano E and de Matos Filho R L 2001 Phys. Rev. Lett. 87 093601
|
[37] |
Rabl P, DeMille D, Doyle J M, Lukin M D, Schoelkopf R J and Zoller P 2006 Phys. Rev. Lett. 97 033003
|
[38] |
Zhang X L, Gao K L and Feng M 2006 Phys. Rev. A 74 024303
|
[39] |
Plenio M B and Knight P L 1998 Rev. Mod. Phys. 70 101
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|