Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 110301    DOI: 10.1088/1674-1056/22/11/110301
GENERAL Prev   Next  

Exact solution of Schrödinger equation with q-deformed quantum potentials using Nikiforov–Uvarov method

Falaye B. J.a, Oyewumi K. J.a, Abbas M.b
a Theoretical Physics Section, Department of Physics University of Ilorin, P. M. B. 1515, Ilorin, Nigeria;
b Physics Department, Kebbi State University of Science and Technology, P. M. B. 1144, Aliero, Nigeria
Abstract  In this paper, we present the exact solution of the one-dimensional Schrödinger equation for the q-deformed quantum potentials via the Nikiforov–Uvarov method. The eigenvalues and eigenfunctions of these potentials are obtained via this method. The energy equations and the corresponding wave functions for some special cases of these potentials are briefly discussed. The PT-symmetry and Hermiticity for these potentials are also discussed.
Keywords:  Schrödinger equation      q-deformed quantum potential      Woods–Saxon potential      Nikiforov–Uvarov method  
Received:  17 February 2013      Revised:  14 May 2013      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Fd (Algebraic methods)  
Corresponding Authors:  Falaye B. J., Oyewumi K. J., Abbas M.     E-mail:  fbjames11@physicist.net;kjoyewumi66444@unilorin.edu.ng;maphysik@yahoo.com

Cite this article: 

Falaye B. J., Oyewumi K. J., Abbas M. Exact solution of Schrödinger equation with q-deformed quantum potentials using Nikiforov–Uvarov method 2013 Chin. Phys. B 22 110301

[1] Fakhri H and Sadeghi J 2004 Mod. Phys. Lett. A 19 615
[2] Berkdemir C, Berkdemir A and Sever R 2008 J. Math. Chem. 43 944
[3] Berkdemir C, Berkdemir A and Sever R 2006 J. Phys. A: Math. Gen. 39 13455
[4] Berkdemir C. Berkdemir A and Sever R 2005 Phys. Rev. C 72 027001
[5] Aydoğdu O and Sever R 2010 Eur. Phys. J. A 43 73
[6] Ikhdair S M, Falaye B J and Hamzavi M 2013 Chin. Phys. Lett. 30 020305
[7] Ahmed Z 2002 Phys. Lett. A 294 287
[8] Gu X Y and Sun J Q 2010 J. Math. Phys. 51 022106
[9] Simsek M and Erifes H 2004 J. Phys. A: Math. Gen. 37 4379
[10] Meyur S and Debnath S 2008 Mod. Phys. Lett. A 23 2077
[11] Agboola D 2009 Phys. Scr. 80 065304
[12] Agboola D 2011 Commun. Theor. Phys. 55 972
[13] Zhong M Q, Gonzalez-Cisneros A, Xu B W and Dong S H 2007 Phy. Lett. A 371 180
[14] Akbarieh A R and Motavalli H 2008 Mod. Phys. Lett. A 23 3005
[15] Oyewumi K J and Akoshile C O 2010 Eur. Phys. J. A 45 311
[16] Ikot A N and Akpabio L E 2010 Appl. Phys. Res. 2 202
[17] Ikhdair S M 2010 J. Math. Phys. 51 023525
[18] Oyewumi K J 2012 Theoretical Concepts of Quantum Mechanics (Croatia: InTech)
[19] Ikhdair S M and Sever R 2012 Appl. Math. Comp. 218 10082
[20] Meyur S and Debnath S 2009 Lat. Am. J. Phys. Educ. 3 300
[21] Ikhdair S M and Abu-Hasna J 2011 Phys. Scr. 83 025002
[22] Qiang W C and Dong S H 2007 Phys. Lett. A 368 13
[23] Dong S H and Garcia-Ravelo J 2007 Phys. Sci. 75 307
[24] Diaf A, Chouchaoni A and Lombard R L 2005 Ann. Phys. 317 354
[25] Qiang W C, Li K and Chen W L 2009 J. Phys. A: Math. Theor. 42 205306
[26] Falaye B J, Oyewumi K J, Ibrahim T T, Punyasena M A and Onate C A 2013 Can. J. Phys. 91 98
[27] Hassanabadi H, Maghsoodi E, Zarrinkamar S and Rahimov H 2012 Can. J. Phys. 90 633
[28] Meyur S and Debnath S 2009 Lat. Am. J. Phys. Educ. 3 300
[29] Oyewumi K J 2010 Int. J. Theor. Phys. 49 1302
[30] Oyewumi K J, Akinpelu F O and Agboola A D 2008 Int. J. Theor. Phys. 47 1039
[31] Oyewumi K J and Sen K D 2012 J. Math. Chem. 50 1039
[32] Falaye B J and Oyewumi K J 2011 Afr. Rev. Phys. 6 211
[33] Motavalli H and Akbarieh A R 2010 Int. J. Theor. Phys. 49 979
[34] Yahya W A and Oyewumi K J 2013 J. Math. Phys. 54 013508
[35] Cunha M S and Christiansen H R 2013 arXiv:1306.0933v1
[36] Ikhdair S M and Falaye B J 2013 Phys. Scr. 87 035002
[37] Maghsoodi E, Hassanabadi H and Aydogdu O 2012 Phys. Scr. 86 015005
[38] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basel: Birkhauser)
[39] Nikiforov A F, Suslor S K and Uvarov V B 1991 Classical Orthogonal Polynomials of a Discrete Variable (Berlin: Springer)
[40] Tezcan C and Sever R 2009 Int. J. Theor. Phys. 48 337
[41] Hamzavi M, Ikhdair S M and Ita B I 2012 Phys. Scr. 85 045009
[42] Hamzavi M, Movahedi M and Thylwe K E 2012 Int. J. Quant. Chem. 112 2701
[43] Hamzavi M and Ikhdair S M 2012 Mol. Phys. 110 3031
[44] Hassanabadi H, Maghsoodi E and Zarrinkamar S 2012 Eur. Phys. J. Plus. 127 31
[45] Hassanabadi H, Maghsoodi E, Zarrinkamar S and Rahimov H 2011 Mod. Phys. Lett. A 26 2703
[46] Hassanabadi H, Lu L L, Zarrinkamar S, Liu G and Rahimov H 2012 Acta Phys. Pol. A 122 1111
[47] Hassanabadi H, Maghsoodi E and Aydogdu A 2012 Phys. Scr. 86 015005
[48] Oyewumi K J and Akoshile C O 2010 Eur. Phys. J. A 45 311
[49] Balantekin A B 1985 Ann. Phys. 164 277
[50] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267
[51] Ui H 1884 Prog. Theor. Phys. 72 192
[52] Khare A and Maharana J 1984 Nucl. Phys. B 244 409
[53] de Crumbrugghe M and Rittenberg V 1983 Ann. Phys. 151 99
[54] Kostelecky A and Nieto M M 1984 Phys. Rev. Lett. 53 2285
[55] Urrutia L F and Hernandez E 1983 Phys. Rev. Lett. 51 755
[56] Gendenshtein L 1983 JETP Lett. 38 356
[57] Cooper F and Freedman B 1983 Ann. Phys. 146 262
[58] Witten E 1981 Nucl. Phys. B 185 513
[59] Sukumar C V 1985 J. Phys. A: Math. Gen. 18 2917
[60] Qiang W C and Dong S H 2010 Europhys. Lett. 89 10003
[61] Ma Z Q, Gonzalez-Cisneros A, Xu B W and Dong S H 2007 Phys. Lett. A 371 180
[62] Dong S H and Gonzalez-Cisneros A 2008 Ann. Phys. 323 1136
[63] Gu X Y, Dong S H and Ma Z Q 2009 J. Phys.: Math. Theor. 42 035303
[64] Ikhdair S M 2011 Phys. Scr. 83 025002
[65] Dong S H, Morales D and Garcia-Ravelo J 2007 Int. J. Mod. Phys. E 16 189
[66] Ciftci H, Hall R L and Saad N 2003 J. Phys. A: Math Gen. 36 11807
[67] Ciftci H, Hall R L and Saad N 2005 Phys. Lett. A 340 388
[68] Falaye B J 2012 J. Math. Phys. 53 082107
[69] Falaye B J 2012 Few-Body Syst. 53 557
[70] Falaye B J 2012 Few-Body Syst. 53 563
[71] Falaye B J 2012 Cent. Eur. J. Phys. 10 960
[72] Ikhdair S M, Falaye B J and Hamzavi M 2013 Chin. Phys. Lett. 30 020305
[73] Bayrak O and Boztosun I 2007 Phys. Scr. 76 92
[74] Bayrak O, Boztosun I and Ciftci H 2007 Int. J. Quantum Chem. 107 540
[75] Champion B, Hall R L and Saad N 2008 Int. J. Mod. Phys. A 23 1405
[76] Bayrak O and Boztosun I 2007 Int. J. Quantum Chem. 107 1040
[77] Oyewumi K J, Falaye B J, Onate C A, Oluwadare O J and Yahya W A 2013 Mol. Phys. (online published)
[78] Ikhdair S M and Falaye B J 2013 Chem. Phys. 421 84
[79] Abdalla M S, Eleuch H and Barakat T 2013 Rep. Math. Phys. 71 217
[80] Arai A 1991 J. Math. Anal. Appl. 158 63
[81] Abramowitz M and Stegun M Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (New York: Dover)
[82] Gradshteyn I S and Ryzhik I M 2007 Table of Integrals, Series, and Products (New York: Academic Press)
[83] Rosen N and Morse P M 1932 Phys. Rev. 42 210
[84] Yi L Z, Diao Y F, Liu J Y and Jia C S 2004 Phys. Lett. A 333 212
[85] Soylu A, Bayrak O and Boztosun I 2008 Chin. Phys. Lett. 25 2754
[86] Tasşkin F 2009 Int. J. Theor. Phys. 48 1142
[87] Ibrahim T T, Oyewumi K J and Wyngaardt S M 2012 Eur. Phys. J. Plus 127 100
[88] Amani A R, Moghrimoazzen M A, Ghorbanpour H and Barzegaran S 2010 Afr. J. Math. Phys. 10 31
[89] Meyur S and Debnath S 2010 Lat. Am. J. Phys. Educ. 4 3
[90] Ikhdair S M and Sever R 2007 Int. J. Theor. Phys. 46 1643
[1] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation
Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211.
[2] A nonlinear Schrödinger equation for gravity waves slowly modulated by linear shear flow
Shaofeng Li(李少峰), Juan Chen(陈娟), Anzhou Cao(曹安州), Jinbao Song(宋金宝). Chin. Phys. B, 2019, 28(12): 124701.
[3] Dark and multi-dark solitons in the three-component nonlinear Schrödinger equations on the general nonzero background
Zhi-Jin Xiong(熊志进), Qing Xu(许庆), Liming Ling(凌黎明). Chin. Phys. B, 2019, 28(12): 120201.
[4] Quantum pseudodots under the influence of external vector and scalar fields
M Eshghi, S M Ikhdair. Chin. Phys. B, 2018, 27(8): 080303.
[5] Multi-soliton solutions for the coupled modified nonlinear Schrödinger equations via Riemann-Hilbert approach
Zhou-Zheng Kang(康周正), Tie-Cheng Xia(夏铁成), Xi Ma(马茜). Chin. Phys. B, 2018, 27(7): 070201.
[6] Above-threshold ionization of hydrogen atom in chirped laser fields
Yuan-Yuan Ni(倪园园), Song-Feng Zhao(赵松峰), Xiao-Yong Li(李小勇), Guo-Li Wang(王国利), Xiao-Xin Zhou(周效信). Chin. Phys. B, 2018, 27(7): 073203.
[7] Localized waves in three-component coupled nonlinear Schrödinger equation
Tao Xu(徐涛), Yong Chen(陈勇). Chin. Phys. B, 2016, 25(9): 090201.
[8] Non-relativistic scattering amplitude for a new multi-parameter exponential-type potential
Yazarloo B H, Mehraban H, Hassanabadi H. Chin. Phys. B, 2016, 25(8): 080302.
[9] (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect
Jin-Yuan Li(李近元), Nian-Qiao Fang(方念乔), Ji Zhang(张吉), Yu-Long Xue(薛玉龙), Xue-Mu Wang(王雪木), Xiao-Bo Yuan(袁晓博). Chin. Phys. B, 2016, 25(4): 040202.
[10] Nonrelativistic Shannon information entropy for Kratzer potential
Najafizade S A, Hassanabadi H, Zarrinkamar S. Chin. Phys. B, 2016, 25(4): 040301.
[11] Novel exact solutions of coupled nonlinear Schrödinger equations with time–space modulation
Chen Jun-Chao (陈俊超), Li Biao (李彪), Chen Yong (陈勇). Chin. Phys. B, 2013, 22(11): 110306.
[12] Analytical solutions and rogue waves in (3+1)-dimensional nonlinear Schrödinger equation
Ma Zheng-Yi(马正义) and Ma Song-Hua(马松华) . Chin. Phys. B, 2012, 21(3): 030507.
No Suggested Reading articles found!