INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Efficiency and droop improvement in a blue InGaN-based light emitting diode with a p-InGaN layer inserted in the GaN barriers |
Wang Xing-Fu (王幸福), Tong Jin-Hui (童金辉), Zhao Bi-Jun (赵璧君), Chen Xin (陈鑫), Ren Zhi-Wei (任志伟), Li Dan-Wei (李丹伟), Zhuo Xiang-Jing (卓祥景), Zhang Jun (章俊), Yi Han-Xiang (易翰翔), Li Shu-Ti (李述体) |
Laboratory of Nanophotonic Functional Materials and Devices, Institute of Opto-Electronic Materials and Technology, South China Normal University, Guangzhou 510631, China |
|
|
Abstract The advantages of a blue InGaN-based light-emitting diode with a p-InGaN layer inserted in the GaN barriers is studied. The carrier concentration in the quantum well, radiative recombination rate in the active region, output power, and internal quantum efficiency are investigated. The simulation results show that the InGaN-based light-emitting diode with a p-InGaN layer inserted in the barriers has better performance over its conventional counterpart and the light emitting diode with p-GaN inserted in the barriers. The improvement is due to enhanced Mg acceptor activation and enhanced hole injection into the quantum wells.
|
Received: 14 January 2013
Revised: 21 March 2013
Accepted manuscript online:
|
PACS:
|
85.60.Jb
|
(Light-emitting devices)
|
|
87.15.A-
|
(Theory, modeling, and computer simulation)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
Corresponding Authors:
Li Shu-Ti
E-mail: lishuti@scnu.edu.cn
|
Cite this article:
Wang Xing-Fu (王幸福), Tong Jin-Hui (童金辉), Zhao Bi-Jun (赵璧君), Chen Xin (陈鑫), Ren Zhi-Wei (任志伟), Li Dan-Wei (李丹伟), Zhuo Xiang-Jing (卓祥景), Zhang Jun (章俊), Yi Han-Xiang (易翰翔), Li Shu-Ti (李述体) Efficiency and droop improvement in a blue InGaN-based light emitting diode with a p-InGaN layer inserted in the GaN barriers 2013 Chin. Phys. B 22 098504
|
[1] |
Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
|
[2] |
Schubert M F, Chhajed S, Kim J K, Schubert E, Koleske F, Crawford M H, Lee S R, Fischer A J, Thaler G and Banas M A 2007 Appl.Phys. Lett. 91 231114
|
[3] |
Schubert M F, Xu J, Kim J K, Schubert E F, Kim M H, Yoon S, Lee S M, Sone C, Sakong T and Park Y 2008 Appl. Phys. Lett. 93 041102
|
[4] |
Pope I A, Smowton P M, Blood P, Thomson J D, Kappers M J and Humphreys C J 2003 Appl. Phys. Lett. 82 2755
|
[5] |
Xie J, Ni X, Fan Q, Shimada R, Ozgur U and Morkoc H 2008 Appl. Phys. Lett. 93 121107
|
[6] |
Rozhansky I V and Zakheim D A 2006 Phys. Status Solidi C 3 2160
|
[7] |
Rozhansky I V and Zakheim D A 2007 Phys. Status Solidi A 204 227
|
[8] |
Kim A Y, Götz W, Steigerwald D A, Wierer J J, Gardner N F, Sun J, Stockman S A, Martin P S, Krames M R, Kern R S and Steranka F M 2001 Phys. Status Solidi A 188 15
|
[9] |
Chichibu S F, Azuhata T, Sugiyama M, Kitamura T, Washida Y, Okumurac H, Nakanwashi H, Sota T and Mukai T 2001 J. Vac. Sci. Technol. B 19 2177
|
[10] |
Shen Y C, Müller G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101
|
[11] |
Gardner N F, Müller G O, Shen Y C, Chen G, Watanabe S, Götz W and Krames M R 2007 Appl. Phys. Lett. 91 243506
|
[12] |
Monemar B and Sernelius E B 2007 Appl. Phys. Lett. 91 181103
|
[13] |
Efremov A A, Bochkwereva N I, Gorbunov R I, Larinovich D A, Rebane Y T, Tarkhin D V and Shreter Y G 2006 Semiconductors 40 605
|
[14] |
Han S H, Lee D Y, Lee S J, Cho C Y, Kwon M K, Lee S P, Noh D Y, Kim D J, Kim Y C and Park S J 2009 Appl. Phys. Lett. 94 231123
|
[15] |
Kim B J, Ryu Y R, Lee T S and White H W 2009 Appl. Phys. Lett. 94 103506
|
[16] |
Kuo Y K, Tsai M C, Yen S H, Hsu T C and Shen Y J 2010 IEEE J. Quantum Electron. 46 8
|
[17] |
Lu T P, Li S T, Zhang K, Liu C, Xu Y Q, Tong J H, Wu L J, Wang H L, Yang X D, Yin Y A, Xiao G W and Zhou Y G 2012 Appl. Phys. Lett. 100 141106
|
[18] |
Han S H, Cho C Y, Lee S J, Park T Y, Kim T H, Park S H, Kang S W, Kim J W, Kim Y C and Park S J 2010 Appl. Phys. Lett. 96 051113
|
[19] |
Kumakura K, Makimoto T and Kobayashi N 2000 Jpn. J. Appl. Phys. 39 337
|
[20] |
Fiorentini V, Bernardini F and Ambacher O 2002 Appl. Phys. Lett. 80 1204
|
[21] |
Waldron E L, Graff J W and Schubert E F 2001 Appl. Phys. Lett. 79 2737
|
[22] |
Gessmann T, Li Y L, Waldron E L, Graff J W, Schubert E F and Sheu J K 2002 Appl. Phys. Lett. 80 986
|
[23] |
Zheng Q H, Yin Y A, Zhu L H, Huang J, Li X Y and Liu B L 2009 Appl. Phys. Lett. 94 222104
|
[24] |
Waldron E L, Graff J W and Schubert E F 2001 Appl. Phys. Lett. 79 2737
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|