Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 086302    DOI: 10.1088/1674-1056/22/8/086302
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Periodic, quasiperiodic, and chaotic breathers in two-dimensional discrete β-Fermi-Pasta-Ulam lattice

Xu Quan (徐权)a b, Tian Qiang (田强)b
a Department of Physics, Daqing Normal University, Daqing 163712, China;
b Department of Physics, Beijing Normal University, Beijing 100875, China
Abstract  Using numerical method, we investigate whether periodic, quasiperiodic, and chaotic breathers are supported by the two-dimensional discrete Fermi-Pasta-Ulam (FPU) lattice with linear dispersion term. The spatial profile and time evolution of the two-dimensional discrete β-FPU lattice are segregated by the method of separation of variables, and the numerical simulations suggest that the discrete breathers (DBs) are supported by the system. By introducing a periodic interaction into the linear interaction between the atoms, we achieve the coupling of two incommensurate frequencies for a single DB, and the numerical simulations suggest that the quasiperiodic and chaotic breathers are supported by the system, too.
Keywords:  breather      quasiperiodic breather      chaotic breather  
Received:  20 December 2012      Revised:  29 January 2013      Accepted manuscript online: 
PACS:  63.20.Ry (Anharmonic lattice modes)  
  63.20.Pw (Localized modes)  
  05.50.+q (Lattice theory and statistics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11247255) and the Natural Science Foundation of Heilongjiang Province, China (Grant No. A200506).
Corresponding Authors:  Xu Quan     E-mail:  quanx2008@yeah.net

Cite this article: 

Xu Quan (徐权), Tian Qiang (田强) Periodic, quasiperiodic, and chaotic breathers in two-dimensional discrete β-Fermi-Pasta-Ulam lattice 2013 Chin. Phys. B 22 086302

[1] Sievers A J and Takeno S 1998 Phys. Rev. Lett. 61 970
[2] Cretegry T, Livi R and Spicci M 1998 Physica D 119 88
[3] James G and Noble P 2004 Physica D 196 124
[4] Hornguist M, Lennholm E and Basu C 2000 Physica D 136 88
[5] Maniadis P, Zolotaryuk A V and Tsironis G P 2003 Phys. Rev. E 67 046612
[6] James G and Kastner M 2007 Nonlinearity 20 631
[7] Ullmann K, Lichtenberg A J and Corso G 2000 Phys. Rev. E 61 2471
[8] Gershgorin B, Lvov Y V and Cai D 2005 Phys. Rev. Lett. 95 264302
[9] Reigada R, Sarmiento A and Lindenberg K 2002 Phys. Rev. E 66 046607
[10] Khomeriki R 2002 Phys. Rev. E 65 026605
[11] Sanchez-Rey B, James G, Uevas J C and Archilla J F R 2004 Phys. Rev. B 70 014301
[12] Johansson M and Aubry S 1997 Nonlinearity 10 1151
[13] Cretegny T, Dauxois T, Ruffo S and Torcini A 1998 Physica D 121 109
[14] Chechin G M, Dzhelauhova G S and Mehonoshina E A 2006 Phys. Rev. E 74 036608
[15] Antonopoulos C and Bountis T 2006 Phys. Rev. E 73 056206
[16] Hennig D 1999 Phys. Rev. E 59 1637
[17] Maniadis P and Bountis T 2006 Phys. Rev. E 73 046211
[18] Butt I A and Wattis J A D 2006 J. Phys. A: Math. Gen. 39 4955
[19] Xu Q and Tian Q 2009 Chin. Phys. B 18 259
[20] Xu Q and Tian Q 2007 Chin. Phys. Lett. 24 3347
[1] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[2] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[3] Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation
Jing Wang(王静), Xue-Li Ding(丁学利), and Biao Li(李彪). Chin. Phys. B, 2022, 31(10): 100502.
[4] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[5] General M-lumps, T-breathers, and hybrid solutions to (2+1)-dimensional generalized KDKK equation
Peisen Yuan(袁培森), Jiaxin Qi(齐家馨), Ziliang Li(李子良), and Hongli An(安红利). Chin. Phys. B, 2021, 30(4): 040503.
[6] Breather solutions of modified Benjamin-Bona-Mahony equation
G T Adamashvili. Chin. Phys. B, 2021, 30(2): 020503.
[7] Interaction region of magnon-mediated spin torques and novel magnetic states
Zai-Dong Li(李再东), Qi-Qi Guo(郭奇奇), Yong Guo(郭永), Peng-Bin He(贺鹏斌), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(10): 107506.
[8] Breathers and solitons for the coupled nonlinear Schrödinger system in three-spine α-helical protein
Xiao-Min Wang(王晓敏) and Peng-Fei Li(李鹏飞). Chin. Phys. B, 2021, 30(10): 100509.
[9] Lax pair and vector semi-rational nonautonomous rogue waves for a coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
[10] Formation mechanism of asymmetric breather and rogue waves in pair-transition-coupled nonlinear Schrödinger equations
Zai-Dong Li(李再东), Yang-yang Wang(王洋洋), Peng-Bin He(贺鹏斌). Chin. Phys. B, 2019, 28(1): 010504.
[11] Modulational instability, quantum breathers and two-breathers in a frustrated ferromagnetic spin lattice under an external magnetic field
Wanhan Su(苏琬涵), Jiayu Xie(谢家玉), Tianle Wu(吴天乐), Bing Tang(唐炳). Chin. Phys. B, 2018, 27(9): 097501.
[12] Controllable optical superregular breathers in the femtosecond regime
Yang Ren(任杨), Zhan-Ying Yang(杨战营), Chong Liu(刘冲), Wen-Li Yang(杨文力). Chin. Phys. B, 2018, 27(1): 010504.
[13] Localized waves of the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics
Tao Xu(徐涛), Yong Chen(陈勇), Ji Lin(林机). Chin. Phys. B, 2017, 26(12): 120201.
[14] Kuznetsov-Ma soliton and Akhmediev breather of higher-order nonlinear Schrödinger equation
Zai-Dong Li(李再东), Xuan Wu(吴璇), Qiu-Yan Li(李秋艳), P B He(贺鹏斌). Chin. Phys. B, 2016, 25(1): 010507.
[15] Soliton breathers in spin-1 Bose–Einstein condensates
Ji Shen-Tong (冀慎统), Yan Pei-Gen (颜培根), Liu Xue-Shen (刘学深). Chin. Phys. B, 2014, 23(3): 030311.
No Suggested Reading articles found!