Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 085202    DOI: 10.1088/1674-1056/22/8/085202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Pressure ranges of velocity splitting of ablated particles produced by pulsed laser deposition in different inert gases

Ding Xue-Cheng (丁学成), Wang Ying-Long (王英龙), Chu Li-Zhi (褚立志), Deng Ze-Chao (邓泽超), Liang Wei-Hua (梁伟华), Fu Guang-Sheng (傅广生)
College of Physics Science and Technology, Hebei University, Baoding 071002, China
Abstract  The transport of ablated particles produced by single pulsed-laser ablation is simulated via Monte Carlo method. The pressure ranges of velocity splitting of ablated particles in different inert gases are investigated. The result shows that the range of velocity splitting decreases with the atomic mass of the ambient gas increasing. The ambient gas whose atomic mass is more than that of Kr cannot induce the velocity splitting of ablated particles. The results are explained by the underdamping model and the inertia flow model.
Keywords:  ablated particles      pressure ranges      velocity splitting      gas type  
Received:  03 September 2012      Revised:  26 December 2012      Accepted manuscript online: 
PACS:  52.65.-y (Plasma simulation)  
  52.25.Fi (Transport properties)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB612305) and the Natural Science Foundation of Hebei Province, China (Grant Nos. E2012201035 and E2011201134).
Corresponding Authors:  Wang Ying-Long     E-mail:  hdwangyl@hbu.edu.cn

Cite this article: 

Ding Xue-Cheng (丁学成), Wang Ying-Long (王英龙), Chu Li-Zhi (褚立志), Deng Ze-Chao (邓泽超), Liang Wei-Hua (梁伟华), Fu Guang-Sheng (傅广生) Pressure ranges of velocity splitting of ablated particles produced by pulsed laser deposition in different inert gases 2013 Chin. Phys. B 22 085202

[1] Lownds D H, Geohegan D B, Puretzky A A, Norton D P and Rouleau C M 1996 Science 273 898
[2] Wang Y L, Chen C, Ding X C, Chu L Z, Deng Z C, Liang W H and Fu G S 2011 Laser Part. Beams 29 105
[3] Kim K H, Watanabe K, Mulegeta D, Freund H and Menzel D 2011 Phys. Rev. Lett. 107 047401
[4] Amorusoa S, Bruzzese R, Wang X and Xia J 2008 Appl. Phys. Lett. 92 041503
[5] Huang Q and Chen J 2009 Appl. Phys. Lett. 95 191104
[6] Wang Y L, Chu L Z, Li Y L and Fu G S 2009 Micro & Nano Lett. 4 39
[7] Wood R F, Chen K R, Leboeuf J N, Puretzky A A and Geohegan D B 1997 Phys. Rev. Lett. 79 1571
[8] Harilal S S, Binghu C V, Tillack M S, Najmabadi F and Gaeris A C 2003 J. Appl. Phys. 93 2380
[9] Ding X C, Wang Y L, Chu L Z, Deng Z C, Liang W H, Galalaldeen I I A and Fu G S 2011 Europhys. Lett. 96 55002
[10] Ding X C, Fu G S, Liang W H, Chu L Z, Deng Z C and Wang Y L 2010 Acta Phys. Sin. 59 3331 (in Chinese)
[11] Leonid V Z and Barbara J G 1997 Appl. Phys. Lett. 71 551
[12] Han M, Gong Y, Zhou J, Yin C, Song C F, Muto N, Takiya T and Iwata Y 2002 Phys. Lett. A 302 182
[13] Bittencurt J A 2004 Fundamentals of Plasma Physics (New York: Springer-Verlag) pp. 560-566
[14] Yoshida T, Takeyama S, Yamada Y and Mutoh K 1996 Appl. Phys. Lett. 68 1772
[1] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[2] Numerical simulation of fueling pellet ablation and transport in the EAST H-mode discharge
Wan-Ting Chen(陈婉婷), Ji-Zhong Sun(孙继忠), Fang Gao(高放), Lei Peng(彭磊), and De-Zhen Wang(王德真). Chin. Phys. B, 2022, 31(7): 075204.
[3] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[4] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[5] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[6] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[7] Landau damping of electrons with bouncing motion in a radio-frequency plasma
Jun Tao(陶军), Nong Xiang(项农), Yemin Hu(胡业民), and Yueheng Huang(黄跃恒). Chin. Phys. B, 2021, 30(12): 125202.
[8] Ultrabright γ-ray emission from the interaction of an intense laser pulse with a near-critical-density plasma
Aynisa Tursun(阿依妮萨·图尔荪), Mamat Ali Bake(买买提艾力·巴克), Baisong Xie(谢柏松), Yasheng Niyazi(亚生·尼亚孜), and Abuduresuli Abudurexiti(阿不都热苏力·阿不都热西提). Chin. Phys. B, 2021, 30(11): 115202.
[9] Effect of pulse duration on generation of attosecond pulse with coherent wake emission
Siyu Chen(陈思宇), Zhinan Zeng(曾志男), and Ruxin Li(李儒新). Chin. Phys. B, 2021, 30(11): 114206.
[10] Multibeam Raman amplification of a finite-duration seed in a short distance
Y G Chen(陈雨谷), Y Chen(陈勇), S X Xie(谢善秀), N Peng(彭娜), J Q Yu(余金清), and C Z Xiao(肖成卓). Chin. Phys. B, 2021, 30(10): 105202.
[11] Plasma characteristics and broadband electromagnetic wave absorption in argon and helium capacitively coupled plasma
Wen-Chong Ouyang(欧阳文冲), Qi Liu(刘琦), Tao Jin(金涛), and Zheng-Wei Wu(吴征威). Chin. Phys. B, 2021, 30(9): 095203.
[12] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[13] Discharge characteristic of very high frequency capacitively coupled argon plasma
Gui-Qin Yin(殷桂琴), Jing-Jing Wang(王兢婧), Shan-Shan Gao(高闪闪), Yong-Bo Jiang(姜永博), and Qiang-Hua Yuan(袁强华). Chin. Phys. B, 2021, 30(9): 095204.
[14] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[15] Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel
Ming-Hao Yu(喻明浩), Zhe Wang(王哲), Ze-Yang Qiu(邱泽洋), Bo Lv(吕博), and Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2021, 30(6): 065201.
No Suggested Reading articles found!