X-ray spectra of high temperature tungsten plasma calculated with collisional radiative model
Wang Jun (王君)a b, Zhang Hong (张红)a, Cheng Xin-Lu (程新路)a
a School of Physical Science and Technology, Sichuan University, Chengdu 610064, China;
b College of Science, Sichuan University of Science and Engineering, Zigong 643000, China
Abstract Tungsten is regarded as an important candidate of plasma facing material in international thermonuclear experimental reactor (ITER), so the determination and modeling of spectra of tungsten plasma, especially the spectra at high temperature were intensely focused on recently. In this work, using the atomic structure code of Cowan, a collisional radiative model (CRM) based on the spin-orbit-split-arrays is developed. Based on this model, the charge state distribution of tungsten ions is determined and the soft X-ray spectra from high charged ions of tungsten at different temperatures are calculated. The results show that both the average ionization charge and line positions are well agreed with others calculations and measurements with discrepancies of less than 0.63% and 1.26%, respectively. The spectra at higher temperatures are also reported and the relationship between ion abundance and temperature is predicted in this work.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074176) and the Science Foundation of College of Science, Sichuan University of Science and Engineering, China (Grant No. 10LXYA01).
Wang Jun (王君), Zhang Hong (张红), Cheng Xin-Lu (程新路) X-ray spectra of high temperature tungsten plasma calculated with collisional radiative model 2013 Chin. Phys. B 22 085201
[1]
Skladnik-Sadowska E, Malinowski K, Sadowski M J, Wolowski J, Gasior P, Kubkowska M, Rosinski M, Marchenko A K and Sartowska B 2009 J. Nucl. Mater. 390-391 847
[2]
Clementson J, Beiersdorfer P, Magee E W, McLean H S and Wood R D 2010 J. Phys. B: At. Mol. Opt. Phys. 43 144009
[3]
Biedermann C, Radtke R, Seidel R and Putterich T 2009 Phys. Scr. T134 014026
[4]
Podpaly Y, Clementson J, Beiersdorfer P, Willianson J, Brown G V and Gu M F 2009 Phys. Rev. A 80 052504
[5]
Neu R, Fournier K B, Schlogl D and Rice J 1997 J. Phys. B: At. Mol. Opt. Phys. 30 5057
[6]
Neu R, Fournier K B, Bolshukhin D and Dux R 2001 Phys. Scr. T92 307
[7]
Safronova U I, Safronova A S, Beiersdorfer P and Johnson W R 2011 J. Phys. B: At. Mol. Opt. Phys. 44 035005
[8]
Yanagibayashi J, Nakano T, Iwamae A, Kubo H, Hasuo M and Itami K 2010 J. Phys. B: At. Mol. Opt. Phys. 43 144013
[9]
Ralchenko Y, Tan J N, Gillaspy J D and Pomeroy J M 2006 Phys. Rev. A 74 042514
[10]
Putterich T, Neu R, Dux R, Whiteford A D, O'Mullane M G and the ASDEX Upgrade Team 2008 Plasma Phys. Control Fusion 50 085016
[11]
Neu R, Dux R, Kallenbach A, Putterich T, Balden M, Fuchs J C, Herrmann A, Maggi C F, O'Mullane M, Pugno R, Radivojevic I, Rohde V, Sips A C C, Sutterop W, Whiteford A and the ASDEX Upgrade team 2005 Nucl. Fusion 45 209
[12]
Vichev I Y, Novikov V G and Solomyannaya A D 2009 Math. Models Comput. Simul. 1 470
[13]
Li Y Q, Wu J H and Yuan J M 2008 Acta Phys. Sin. 57 4042 (in Chinese)
[14]
Yu X M, Cheng S B, Yi Y G, Zhang J Y, Pu Y D, Zhao Y, Hu F, Yang J M and Zheng Z J 2011 Acta Phys. Sin. 60 085201 (in Chinese)
[15]
Wang R R, Xiong J, Wang W, An H H, Fang Z H and Jia G 2012 Acta Phys. Sin. 61 242901 (in Chinese)
[16]
Ma W, Jin F T and Yuan J M 2007 Acta Phys. Sin. 56 5709 (in Chinese)
[17]
Jin F T, Zeng J L and Yuan J M 2004 Chin. J. Comput. Phys. 21 121
[18]
Han X Y, Xu Y, Wu Z Q and Yan J 2010 High Power Laser Part. Beams 22 1157
[19]
Zhang H, Zhang J Y, Yang X D, Yang G H and Zheng Z J 2003 Chin. Phys. Lett. 20 1474
[20]
Zhang H, Cheng X L, Yang X D, Xie F J, Zhang J Y and Yang G H 2003 Acta Phys. Sin. 52 3098 (in Chinese)
[21]
Cheng X L, Yang L and Zhang H 2002 Chin. Phys. Lett. 19 931
[22]
Cowan RD 1981 The Theory of Atomic Structure and Spectra (Berkeley: University of California Press)
[23]
Zhang J Y, Yang X D, Yang G H, Zhang B H, Lei A L, Liu H J and Li J 2001 Chin. Phys. 10 0809
[24]
Bauche-Arnoult C, Bauche J and Klapisch M 1985 Phys. Rev. A 31 2248
[25]
Li J, Xie W P, Huang X B, Yang L B, Cai H C and Pu Y K 2010 Acta Phys. Sin. 59 7922 (in Chinese)
[26]
Jiao R Z, Cheng X L, Yang X D and Zhu J 2002 Acta Phys. Sin. 51 1755 (in Chinese)
[27]
Yi Y G, Zheng Z J, Yan J, Li P, Fang Q Y and Qiu Y B 2002 Acta Phys. Sin. 51 2740 (in Chinese)
[28]
Gupta G P and Sinha B K 1995 J. Appl. Phys. 77 2287
[29]
Wang T C and Wang Y Z 1986 Chin. J. At. Mol. Phys. 3 231
[30]
Wang T C, Ji W G, Yao J and Zhang Z C 1986 Chin. J. At. Mol. Phys. 3 219
[31]
Colombant D and Tonon G F 1973 J. Appl. Phys. 44 3524
[32]
Zhang J and Gu P J 1987 Chin. J. Comput. Phys. 4 1
[33]
Yi Y G, Zheng Z J, Yan J, Li P, Fang Q Y and Qiu Y B 2003 High Power Laser Part. Beams 15 145
[34]
Peyrusse O 1999 J. Phys. B 32 683
[1]
Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST Zong Xu(许棕), Zhen-Wei Wu(吴振伟), Ling Zhang(张凌), Yue-Heng Huang(黄跃恒), Wei Gao(高伟), Yun-Xin Cheng(程云鑫), Xiao-Dong Lin(林晓东), Xiang Gao(高翔), Ying-Jie Chen(陈颖杰), Lei Li(黎嫘), Yin-Xian Jie(揭银先), Qing Zang(臧庆), Hai-Qing Liu(刘海庆), and EAST team. Chin. Phys. B, 2021, 30(7): 075205.
Poloidal rotation of main ions in the CT-6B tokamak Feng Chun-Hua (冯春华), Li Zan-Liang (李赞良), Yang Xuan-Zong (杨宣宗), Zheng Shao-Bai (郑少白), Li Wen-Lai (李文莱), Wang Long (王龙). Chin. Phys. B, 2003, 12(10): 1135-1139.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.