Abstract A new London-Eyring-Polanyi-Sato potential energy surface is employed in this work to study the stereo properties of the O(3P) + CH4 → H + CH3O reaction in its rovibrationally ground state using the quasiclassical trajectory method (QCT). Our calculations are performed at a range of collision energies, Ec = 1.5 eV~3.5 eV, and the excitation function obtained by the QCT method accords well with the experimental data. The product rotational polarization is calculated, and the product shows a strong rotational polarization in the centre-of-mass coordinate system. The orientation of the product rotational angular momenta is sensitive to the increase in collision energy, and the alignment of the product rotational angular momenta shows some of the properties of the heavy heavy-light mass combination reactions. In the isotopic substituted reaction study, when the H atoms in methane are replaced by D atoms, the rotational polarization is obviously reduced. The polarization-dependent differential cross section is also studied by this QCT calculation to provide detailed information about the rotational alignment and orientation of the product.
(Potential energy surfaces for chemical reactions)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10604012 and 10974023) and the Program for Liaoning Excellent Talents in University, China (Grant No. LJQ2012002).
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.