Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 060305    DOI: 10.1088/1674-1056/22/6/060305
GENERAL Prev   Next  

Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction

Babatunde J. Falayea, Sameer M. Ikhdairb c
a Theoretical Physics Section, Department of Physics, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria;
b Physics Department, Near East University, 922022 Nicosia, Northern Cyprus, Turkey;
c Physics Department, Faculty of Science, An-Najah National University, Nablus, West Bank, Palestine
Abstract  The Dirac equation is solved to obtain its approximate bound states for a spin-1/2 particle in the presence of trigonometric Pöschl-Teller (tPT) potential including a Coulomb-like tensor interaction with arbitrary spin-orbit quantum number κ using an approximation scheme to substitute the centrifugal terms κ(κ± 1)r-2. In view of spin and pseudo-spin (p-spin) symmetries, the relativistic energy eigenvalues and the corresponding two-component wave functions of a particle moving in the field of attractive and repulsive tPT potentials are obtained using the asymptotic iteration method (AIM). We present numerical results in the absence and presence of tensor coupling A and for various values of spin and p-spin constants and quantum numbers n and κ. The non-relativistic limit is also obtained.
Keywords:  Dirac equation      trigonometric Pöschl-Teller potential      tensor interaction      approximation schemes      asymptotic iteration method  
Received:  18 November 2012      Revised:  16 December 2012      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Fd (Algebraic methods)  
  03.65.Pm (Relativistic wave equations)  
  02.30.Gp (Special functions)  
Corresponding Authors:  Babatunde J. Falaye, Sameer M. Ikhdair     E-mail:  fbjames11@physicist.net; sikhdair@neu.edu.tr

Cite this article: 

Babatunde J. Falaye, Sameer M. Ikhdair Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction 2013 Chin. Phys. B 22 060305

[1] Bohr A, Hamamoto I and Mottelson B R 1982 Phys. Scr. 26 267
[2] Dudek J, Nazarewicz W, Szymanski Z and Leander G A 1987 Phys.Rev. Lett. 59 1405
[3] Troltenier D, Bahri C and Draayer J P 1995 Nucl. Phys. A 586 53
[4] Page P R, Goldman T and Ginocchio J N 2001 Phys. Rev. Lett. 86 204
[5] Ginocchio J N, Leviatan A, Meng J and Zhou S G 2004 Phys. Rev. C69 034303
[6] Lu B N, Zhao E G and Zhou S G 2012 Phys. Rev. Lett. 109 072501
[7] Guo J Y 2012 Phys. Rev. C 85 021302
[8] Chen S W and Guo J Y 2012 Phys. Rev. C 85 054312
[9] Guo J Y, Zhou F, Guo F L and Zhou J H 2007 Int. J. Mod. Phys. A 224825
[10] Zhou Y and Guo J Y 2008 Chin. Phys. B 17 380
[11] Gou J Y, Han J C and Wang R D 2006 Phys. Lett. A 353 378
[12] Ikhdair S M and Falaye B J 2013 Phys. Scr. 87 035002
[13] Berkdemir C 2006 Nucl. Phys. A 770 32
[14] Xu Q, Zhu S J 2006 Nucl. Phys. A 768 161
[15] Oyewumi K J and Akoshile C O 2010 Eur. Phys. J. A 45 311
[16] Ackay H 2009 Phys. Lett. A 373 616
[17] Hassanabadia H, Maghsoodia E, Ikot A N and Zarrinkamar S 2013Appl. Math. Comput. 219 9388
[18] Hassanabadi H, Maghsoodi E, Zarrinkamar S, Rahimov H 2012 J.Math. Phys. 53 022104
[19] Hamzavi M, Rajabi A and Hassanabadi H 2010 Phys. Lett. A 374 4303
[20] Ikot A N 2013 Commun. Theor. Phys. 59 268
[21] Ginocchio J N 1997 Phys. Rev. Lett. 78 436
[22] Hecht K T and Adler A 1969 Nucl. Phys. A 137 129
[23] Arima A, Harvey M and Shimizu K 1969 Phys. Lett. B 30 517
[24] Zhou S G, Meng J and Ring P 2003 Phys. Rev. Lett. 91 262501
[25] He X T, Zhou S G, Meng J, Zhao E G and Scheid W 2006 Eur. Phys.J. A 28 265
[26] MoshinskyMand Szczepaniak A 1989 J. Phys. A: Math. Gen. 22 L817
[27] Furnstahl R F, Rusnak J J and Serot B D 1998 Nucl. Phys. A 632 607
[28] Kukulin V I, Loyola G and Moshinsky M 1991 Phys. Lett. A 158 19
[29] Mao G 2003 Phys. Rev. C 67 044318
[30] Lisboa R, Malheiro M, de Castro A S, Alberto P and Fiolhais M 2004Phys. Rev. C 69 0243319
[31] Alberto P, Lisboa R, Malheiro M and de Castro A S 2005 Phys. Rev. C71 034313
[32] Aktay H 2007 J. Phys. A: Math. Theor. 40 6427
[33] Akcay H 2009 Phys. Lett. A 373 616
[34] Ikhdair S M and Sever R 2010 Appl. Math. Comput. 216 545
[35] Ikhdair S M and Sever R 2012 Appl. Math. Comput. 218 10082
[36] Hamzavi M, Ikhdair S M and Ita B I 2012 Phys. Scr. 85 045009
[37] Eshghi M, Hamzavi M and Ikhdair S M 2012 Adv. High Energy Phys.2012 873619
[38] Hamzavi M and Ikhdair S M 2010 Few-Body Syst.DOI: 10.1007/s00601-012-0475-2
[39] Pöschl G and Teller E 1933 Z. Phys. 83 143
[40] Chen G 2001 Acta Phys. Sin. 50 1651 (in Chinese)
[41] Zhang M C and Wang Z B 2006 Acta Phys. Sin. 55 525 (in Chinese)
[42] Liu X Y, Wei G F, Cao X W and Bai H G 2010 Int. J. Theor. Phys. 49343
[43] Candemir N 2012 Int. J. Mod. Phys. E 21 1250060
[44] Hamzavi M and Rajabi A A 2011 Int. J. Quantum Chem. 112 1592
[45] Hamzavi M, Ikhdair S M and Thylwe K E 2012 Int. J. Mod. Phys. E 211250097
[46] Falaye B J 2012 Can. J. Phys. 90 1259
[47] Ciftci H, Hall R L and Saad N 2003 J. Phys. A: Math Gen. 36 11807
[48] Ciftci H, Hall R L and Saad N 2005 Phys. Lett. A 340 388
[49] Hamzavi M and Ikhdair S M 2012 Mol. Phys. 110 3031
[50] Gradshteyn I S and Ryzhik I M 1994 Tables of Integrals, Series andProducts (New York: Academic Press)
[51] Ikhdair S M 2012 Cent. Eur. J. Phys. 10 361
[52] Falaye B J 2012 Cent. Eur. J. Phys. 10 960
[53] Falaye B J 2012 Few Body Sys. 53 557
[54] Falaye B J 2012 Few Body Sys. 53 563
[55] Falaye B J 2012 J. Math. Phys. 53 082107
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] Bound states resulting from interaction of the non-relativistic particles with the multiparameter potential
Ahmet Taş, Ali Havare. Chin. Phys. B, 2017, 26(10): 100301.
[3] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[4] Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method
Resita Arum Sari, A Suparmi, C Cari. Chin. Phys. B, 2016, 25(1): 010301.
[5] Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential
Ade Kurniawan, A. Suparmi, C. Cari. Chin. Phys. B, 2015, 24(3): 030302.
[6] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
[7] Solution of Dirac equation around a charged rotating black hole
Lü Yan (吕嫣), Hua Wei (花巍). Chin. Phys. B, 2014, 23(4): 040403.
[8] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[9] Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method
M. Eshghi, S. M. Ikhdair. Chin. Phys. B, 2014, 23(12): 120304.
[10] Spin and pseudospin symmetric Dirac particles in the field of Tietz–Hua potential including Coulomb tensor interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(9): 090305.
[11] Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension
M. Hamzavi, A. A. Rajabi. Chin. Phys. B, 2013, 22(9): 090301.
[12] Relativistic symmetries in the Hulthén scalar–vector–tensor interactions
Majid Hamzavi, Ali Akbar Rajabi. Chin. Phys. B, 2013, 22(8): 080302.
[13] Solutions of the Duffin Kemmer Petiau equation in the presence of Hulthén potential in (1+2) dimensions for unity spin particles using the asymptotic iteration method
Z. Molaee, M. K. Bahar, F. Yasuk, H. Hassanabadi. Chin. Phys. B, 2013, 22(6): 060306.
[14] Relativistic symmetries in Rosen–Morse potential and tensor interaction using the Nikiforov–Uvarov method
Sameer M Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(4): 040302.
[15] Exact solutions of Dirac equation with Pöschl–Teller double-ring-shaped Coulomb potential via Nikiforov–Uvarov method
E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar. Chin. Phys. B, 2013, 22(3): 030302.
No Suggested Reading articles found!