Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 060304    DOI: 10.1088/1674-1056/22/6/060304
GENERAL Prev   Next  

Deformed oscillator algebra for quantum superintegrable systems in two-dimensional Euclidean space and on the complex two-sphere

H. Panahi, Z. Alizadeh
Department of Physics, University of Guilan, Rasht 51335-1914, Iran
Abstract  In this work, we study the superintegrable quantum systems in two-dimensional Euclidean space and on the complex two-sphere with second-order constants of the motion. We show that these constants of motion satisfy the deformed oscillator algebra. Then, we easily calculate the energy eigenvalues in an algebraic way by solving of a system of two equations satisfied by its structure function. The results are in agreement to the ones obtained from the solution of the relevant Schrödinger equation.
Keywords:  superintegrable systems      constants of motion      deformed oscillator algebra      structure function  
Received:  15 October 2012      Revised:  12 December 2012      Accepted manuscript online: 
PACS:  03.65.Fd (Algebraic methods)  
  02.30.Ik (Integrable systems)  
Corresponding Authors:  H. Panahi, Z. Alizadeh     E-mail:  t-panahi@guilan.ac.ir; alizadeh52@yahoo.com

Cite this article: 

H. Panahi, Z. Alizadeh Deformed oscillator algebra for quantum superintegrable systems in two-dimensional Euclidean space and on the complex two-sphere 2013 Chin. Phys. B 22 060304

[1] Arnold V I 1978 Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (Berlin: Springer-Verlag)
[2] Evans N W 1991 J. Math. Phys 32 3369
[3] Evans N W 1990 Phys. Lett. A 147 483
[4] Wojciechowski S 1983 Phys. Lett. A 95 279
[5] Ranada M F 1997 J. Math. Phys. 38 4165
[6] Eisenhart L P 1934 Ann. Math. 35 287
[7] Tegment A and Vercin A 2004 Int. J. Mod. Phys. A 19 393
[8] Calzada J A, Negro J and del Olmo M A 2007 Phys. Atom. Nucl. 70 496
[9] Calzada J A, Kuru S and del Olmo M A 2009 SIGMA 5 39
[10] Zhang Y F 2003 Chin. Phys. 11 1194
[11] Yang H W, Dong H H and Yin B S 2012 Chin. Phys. B 21 100204
[12] Hu H W and Yu J 2012 Chin. Phys. B 21 020202
[13] Hietarinta J 1987 Phys. Rep. 147 87
[14] Evans N W 1990 Phys. Rev. A 41 5666
[15] Kilber M and Winternitz P 1990 Phys. Lett. A 147 338
[16] Kalnins G and Miller W 2012 SIGMA 8 34
[17] Ballesteros A and Herrans J 1999 J. Phys. A: Math. Gen. 32 8851
[18] Gadella N, Negro J, Pronko G P and Santander M 2008 J. Phys. A: Math. Theor. 41 30
[19] Garcia M A G and Turbiner A V 2010 Int. J. Mod. Phys. A 25 5567
[20] Liu R W and Chen L Q 2004 Chin. Phys. 13 1615
[21] Ni Z X 1998 Chin. Phys. 7 183
[22] Ying Z J and Wang S J 1999 Chin. Phys. Lett. 16 861
[23] Moshinsky M, Quesne C and Loyola G 1990 Ann. Phys. (NY) 198 103
[24] Higgs P W 1979 J. Phys. A: Math. Gen. 12 309
[25] Leemon H I 1979 J. Phys. A: Math. Gen. 12 489
[26] Kulish P P and Reshetikhin N Yu 1981 Zapiski Semenarov, LOMI 101 101
[27] Sklyanin E K 1982 Funct. Anal. Appl. 16 262
[28] Drinfeld V G 1986 Proccedings of the International Congress of Mathematicians, ed. Gleason A M (Providence: American Mathematical Society)
[29] Jimbo M 1986 Lett. Math. Phys. 11 247
[30] Pan F and Dai L R 1997 Chin. Phys. Lett. 14 5
[31] Daskaloyannis C 1991 J. Phys. A: Math. Gen. 24 L789
[32] Kubo H 1997 Mod. Phys. Lett. A 12 1335
[33] Naderi H, Soitanolkotabi M and Roknizadeh R 2009 Int. J. Mod. Phys. A 24 1963
[34] Daskaloyannis C 1992 J. Phys. A: Math. Gen. 25 2261
[35] Daskaloyannis C and Yosilantis K 1992 J. Phys. A: Math. Gen. 25 4175
[36] Bonatsos D and Daskaloyannis C 1993 Chem. Phys. Lett. 203 150
[37] Meng X G, Wang J S and Liang B L 2011 Chin. Phys. B 20 050303
[38] Huang H J and Li Y H 2011 Chin. Phys. B 20 010302
[39] Kalnins E G, Miller W Jr and Pogosyan G S 2000 J. Phys. A: Math. Gen. 33 6791
[40] Dong S H 2007 Factorization Method in Quantum Mechanics (Amsterdam: Springer)
[41] Dong S H 2011 Wave Equation in Higher Dimensions (Amsterdam: Springer)
[42] Lu J 2004 Chin. Phys. 6 811
[43] Weigert S 1992 Physica D 56 107
[44] Kalnins E G, Kress J M, Pogosyan G S and Miller W Jr 2001 J. Phys. A: Math. Gen. 34 4705
[45] Bonatsos D, Daskaloyannis C and Kokkotas K 1994 Phys. Rev. A 50 3700
[46] Kalnins E G, Kress J M and Miller W Jr 2005 J. Math. Phys. 46 053510
[47] Ballesteros A, Enciso A, Herranz F, Ragnisco O and Riglioni D 2011 SIGMA 7 48
[48] Kalnins E G,Williams G C, Miller W Jr and Pogosyan G S 1999 J. Math. Phys. 40 2
[49] Kalnins E G, Miller Jr W, Kress J M and Winternitz P 2003 J. Math. Phys. 44 12
[50] Kalnins E G, Miller W Jr and Pogosyan G S 2000 J. Phys. A: Math. Gen. 33 4105
[51] Kalnins E G, Miller W Jr and Pogosyan G S 1996 J. Math. Phys. 37 6439
[52] Kalnins E G, Miller W Jr and Post S 2008 SIGMA 4 8
[53] Kalnins E G, Kress J M, Miller W Jr and Post S 2009 SIGMA 5 8
[54] Quesne C 2007 SIGMA 3 67
[1] Nondestructive measurement of thermal contact resistance for the power vertical double-diffused metal-oxide-semiconductor
Li Rui (李睿), Guo Chun-Sheng (郭春生), Feng Shi-Wei (冯士维), Shi Lei (石磊), Zhu Hui (朱慧), Wang Lin (王琳). Chin. Phys. B, 2015, 24(7): 076601.
[2] Longitudinal and transverse structure functions in decaying nearly homogeneous and isotropic turbulence
Imtiaz Ahmad, Lu Zhi-Ming (卢志明), Liu Yu-Lu (刘宇陆). Chin. Phys. B, 2014, 23(1): 014701.
[3] Evaluation of thermal resistance constitution for packaged AlGaN/GaN high electron mobility transistors by structure function method
Zhang Guang-Chen(张光沉), Feng Shi-Wei(冯士维), Zhou Zhou(周舟), Li Jing-Wan(李静婉),and Guo Chun-Sheng(郭春生) . Chin. Phys. B, 2011, 20(2): 027202.
No Suggested Reading articles found!