Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 060306    DOI: 10.1088/1674-1056/22/6/060306
GENERAL Prev   Next  

Solutions of the Duffin Kemmer Petiau equation in the presence of Hulthén potential in (1+2) dimensions for unity spin particles using the asymptotic iteration method

Z. Molaeea, M. K. Baharb c, F. Yasukb, H. Hassanabadid
a Department of Basic Sciences, Garmsar Branch, Islamic Azad university, Garmsar, Iran;
b Department of Physics, Erciyes University, 38039, Kayseri, Turkey;
c Department of Physics, Karamanoglu Mehmetbey University, 70100, Karaman,Turkey;
d Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
Abstract  The relativistic Duffin-Kemmer-Petiau equation in the presence of Hulthén potential in (1+2) dimensions for spin-one particles is studied. Hence, the asymptotic iteration method is used for obtaining energy eigenvalues and eigenfunctions.
Keywords:  Duffin-Kemmer-Petiau equation      Hulthén potential      asymptotic iteration method  
Received:  28 June 2012      Revised:  04 October 2012      Accepted manuscript online: 
PACS:  03.65.Pm (Relativistic wave equations)  
  03.65.Ca (Formalism)  
  98.80.cq.  
Corresponding Authors:  Z. Molaee     E-mail:  zhrmolaee@gmail.com

Cite this article: 

Z. Molaee, M. K. Bahar, F. Yasuk, H. Hassanabadi Solutions of the Duffin Kemmer Petiau equation in the presence of Hulthén potential in (1+2) dimensions for unity spin particles using the asymptotic iteration method 2013 Chin. Phys. B 22 060306

[1] Petiau G, Ph. D Thesis, University of Paris, 1936; Acad. R. Belg. Cl. Sci. Mem. Collect 8, 16 (1936)
[2] Duffin R J 1938 Phys. Rev. 54 1114
[3] Kemmer N 1939 Proc. Roy. Soc. A 173 91
[4] Clark B C, Hama S, Kalbermann R G, Mercer R L and Ray L 1985 Phys. Rev. Lett. 55 592
[5] Clark B C, Furnstahl R J, Kerr L K, Rusnak J J and Hama S 1998 Phys. Lett. B 427 231
[6] Zarrinkamar S, Rajabi A A, Rahimov H and Hassanabadi H 2011 Mod. Phys. Lett. A 26 1621
[7] Hassanabadi H, Yazarloo B H, Zarrinkamar S and Rajabi A A 2011 Phys. Rev. C 84 064003
[8] Oudi R, Hassanabadi S, Rajabi A A and Hassanabadi H 2012 Commun. Theor. Phys. 57 15
[9] Hassanabadi H, Forouhandeh S F, Rahimov H, Zarrinkamar S and Yazarloo B H 2012 Can. J. Phys. 90 (3)
[10] Boumali A 2007 Can. J. Phys. 85 1417
[11] Boumali A 2008 J. Math. Phys. 49 022302
[12] Merad M and Bebsaid S 2007 J. Math. Phys. 48 073515
[13] Kasri Y and Chetouani L 2008 Int. J. Theor. Phys. 47 2249
[14] Boumali A and Chetouani L 2005 Phys. Lett. A 346 261
[15] Ghose P, Samal M K and Datta A 2003 Phys. Lett. A 315 23
[16] Molaee Z, Ghominejad M, Hassanabadi H and Zarrinkamar S 2012 Eur. Phys. J. Plus 127 116
[17] Hassanabadi H, Molaee Z, Ghominejad M and Zarrinkamar S 2012 Few Body System doi: 10.1007/s00601-012-0489-9
[18] Gribov V 1999 Eur. Phys. J. C 10 71
[19] Barrett R C and Nedjadi Y 1995 Nucl. Phys. A 585 311
[20] Ait-Tahar S, Al-Khalili J S and Nedjadi Y 1995 Nucl. Phys. A 589 307
[21] Kanatchikov I V 2000 Rep. Math. Phys. 46 107
[22] Lunardi J T, Pimentel B M, Teixeiri R G and Valverde J S 2000 Phys. Lett. A 268 165
[23] Lunardi J T, Manzoni L A, Pimentel B M and Valverde J S 2000 Int. J. Mod. Phys. A 17 205
[24] Debergh N, Ndimubandi J and Strivay D 1992 Z. Phys. C 56 421
[25] Nedjadi Y and Barret R C 1994 J. Phys. A: Math. Gen. 27 4301
[26] Guo G, Long C, Yang Z and Qin S 2009 Can. J. Phys. 87 989
[27] Boztosun I, Karakoc M, Yasuk F and Durmus A 2006 J. Math. Phys. 47 062301
[28] Yasuk F, Karakoc M and Boztosun I 2008 Phys. Scr. 78 045010
[29] Falek M and Merad M 2008 Commun. Theor. Phys. 50 587
[30] Egrifes H, Demirhan D, Buyukkilic F 2000 Phys. Lett. A 275 229
[31] Qiang W C, Zhou R S and Gao Y 2007 Phys. Lett. A 371 201
[32] Hall R L 1992 J. Phys. A: Math. Gen. 25 1373
[33] Roy B and Roy Choudhury R 1987 J. Phys. A: Math. Gen. 20 3051
[34] Bechler A and Buhring W 1988 J. Phys. B 21 817
[35] Var shni Y P 1990 Phys. Rev. A 41 4682
[36] Wei G F, Chen W L, Wang H Y and Li Y Y 2009 Chin. Phys. B 18 3663
[37] Saad N 2007 Phys. Scr. 76 623
[38] Rojas C and Villalba V M 2005 Phys. Rev. A 71 052101
[39] Wei G F, Zhen Z Z and Dong S H 2009 Cent. Eur. J. Phys. 7 175
[40] Dominguez-Adame F 1989 Phys. Lett. A 136 175
[41] Guo J Y and Fang X Z 2009 Can. J. Phys. 87 1021
[42] Wei G F, Liu X Y and Chen W L 2009 Int. J. Theor. Phys. 78 1649
[43] Moshin P Yu and Tomazelli J L 2008 Mod. Phys. Lett. A 23 129
[44] Kozack R E, Clark B C, Hama S, Mishra V K, Mercer R L and Ray L 1989 Phys. Rev. C 40 2181
[45] Ciftci H, Hall R L and Saad N 2003 J. Phys. A: Math. Gen. 36 11807
[46] Ciftci H, Hall R L and Saad N 2005 J. Phys. A: Math. Gen. 38 1147
[47] Saad N, Hall R L and Ciftci H 2006 J. Phys. A: Math. Gen. 39 13445
[48] Chari M V K and Salon S J 1999 Numerical Methods in Electromagnetism (New York: Academic Press)
[1] Bound states resulting from interaction of the non-relativistic particles with the multiparameter potential
Ahmet Taş, Ali Havare. Chin. Phys. B, 2017, 26(10): 100301.
[2] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[3] Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction
Babatunde J. Falaye, Sameer M. Ikhdair. Chin. Phys. B, 2013, 22(6): 060305.
[4] Bound states of the Dirac equation with position-dependent mass for the Eckart potential
Bahar M. K., Yasuk F.. Chin. Phys. B, 2013, 22(1): 010301.
[5] The scattering states of the generalized Hulthén potential with an improved new approximate scheme to the centrifugal term
Wei Gao-Feng(卫高峰), Chen Wen-Li(陈文利), Wang Hong-Ying(王红英), and Li Yuan-Yuan(李院院). Chin. Phys. B, 2009, 18(9): 3663-3669.
[6] Exact bound state solutions of the Klein--Gordonparticle in Hulthén potential
Zhang Min-Cang(张民仓). Chin. Phys. B, 2008, 17(9): 3214-3216.
No Suggested Reading articles found!