Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 058902    DOI: 10.1088/1674-1056/22/5/058902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

An adaptive strategy based on linear prediction of queue length to minimize congestion in Barabási-Albert scale-free networks

Shen Yi (沈毅)
College of Information Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
Abstract  In this paper, we propose an adaptive strategy based on linear-prediction of queue length to minimize congestion in Barabási-Albert (BA) scale-free networks. This strategy uses local knowledge of traffic conditions and allows nodes to be able to self-coordinate their accepting probability to the incoming packets. We show that the strategy can delay remarkably the onset of congestion and systems avoiding the congestion can benefit from hierarchical organization of accepting rates of nodes. Furthermore, with the increase of prediction orders, we achieve larger values for the critical load together with a smooth transition from free-flow to congestion.
Keywords:  linear prediction      congestion      networks  
Received:  27 August 2012      Revised:  16 October 2012      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60672095) and the Youth Science and Technology Innovation Fund of Nanjing Agricultural University, China (Grant No. KJ2010024).
Corresponding Authors:  Shen Yi     E-mail:  shen_yi1979@njau.edu.cn

Cite this article: 

Shen Yi (沈毅) An adaptive strategy based on linear prediction of queue length to minimize congestion in Barabási-Albert scale-free networks 2013 Chin. Phys. B 22 058902

[1] Faloutsos M, Faloutsos P and Faloutsos C 1999 Compu. Commun. Rev. 29 251
[2] Bono F, Gutiérrez E and Poljansek K 2010 Physica A 389 5287
[3] Tadić B, Rodgers G J and Thurner S 2007 Int. J. Bifurcat. Chaos Appl. Sci. Eng. 17 2363
[4] Boccaletti S, Latorab V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[5] Li S M, Xu X H and Meng L H 2012 Chin. Phys. B 21 088901
[6] Wang D L, Yu Z G and Anh V 2012 Chin. Phys. B 21 080504
[7] Zou A Q, Li Y and Wu J 2010 Chin. Phys. Lett. 27 068901
[8] Newmam M E J 2010 Networks: an Introduction (Oxford: Oxford University Press)
[9] Newman M E J 2003 SIAM Rev. 45 167
[10] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 48
[11] Li W, Yang J Y and Hadden W C 2009 Europhys. Lett. 88 68007
[12] Sun J and Avraham D B 2010 Phys. Rev. E 82 0161109
[13] Sreenivasan S, Cohen R, Lopez E, Toroczkai Z and Stanley H E 2007 Phys. Rev. E 75 036105
[14] Guimerá R, Arenas A, Guilera A D and Giralt F 2002 Phys. Rev. E 66 026704
[15] Rosato V, Issacharoff L, Meloni S, Caligiore D and Tiriticco F 2008 Physica A 387 1689
[16] Scellato S, Fortuna L, Frasca M, Gardeñes J G and Latora V 2010 Eur. Phys. J. B 73 303
[17] Guimerá R, Guilera A D, Redondo F V, Cabrales A and Arenas A 2002 Phys. Rev. Lett. 89 248701
[18] Wang W X, Wang B H, Yin C Y, Xie Y B and Zhou T 2006 Phys. Rev. E 73 026111
[19] Goh K I, Kahng B and Kim D 2001 Phys. Rev. Lett. 87 278701
[20] Echenique P, Gardeñes J G and Moreno Y 2004 Phys. Rev. E 70 056105
[21] Yan G, Zhou T, Hu B, Fu Z Q and Wang B H 2006 Phys. Rev. E 73 046108
[22] Liu Z, Hu M B, Jiang R, Wang W X and Wu Q S 2007 Phys. Rev. E 76 037101
[23] Huang W and Chow T W S 2009 Chaos 19 043124
[24] Kim K, Kahng B and Kim D 2009 Europhys. Lett. 86 58002
[25] Petri G, Jensen H J and Polak J W 2009 Europhys. Lett. 88 20010
[26] Noh J D 2004 Phys. Rev. Lett. 92 118701
[27] Hua D Y and Wang L Y 2010 Chin. Phys. Lett. 27 098901
[28] Oppenheim A V, Willsky A S and Nawab S H 1997 Signals and Systems (London: Pearson Higher Isia Education Press)
[29] Biggs N L 1974 Algebraic Graph Theory (Cambridge: Cambridge University Press)
[30] Shen Y, Pei W J, Wang K, Li T and Wang S P 2008 Physica A 387 6663
[31] Albert R and Barabási A L 1999 Science 286 509
[32] Danila B, Marsh J A and Bassler K E 2007 Chaos 17 026102
[33] Sreenivasan S, Cohen R, López E, Toroczkai Z and Stanley H E 2007 Phys. Rev. E 75 036105
[1] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[2] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[3] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[4] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[5] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[6] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[7] A novel similarity measure for mining missing links in long-path networks
Yijun Ran(冉义军), Tianyu Liu(刘天宇), Tao Jia(贾韬), and Xiao-Ke Xu(许小可). Chin. Phys. B, 2022, 31(6): 068902.
[8] Influence fast or later: Two types of influencers in social networks
Fang Zhou(周方), Chang Su(苏畅), Shuqi Xu(徐舒琪), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2022, 31(6): 068901.
[9] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[10] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[11] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[12] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[13] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[14] Learnable three-dimensional Gabor convolutional network with global affinity attention for hyperspectral image classification
Hai-Zhu Pan(潘海珠), Mo-Qi Liu(刘沫岐), Hai-Miao Ge(葛海淼), and Qi Yuan(袁琪). Chin. Phys. B, 2022, 31(12): 120701.
[15] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
No Suggested Reading articles found!