|
|
Stark spectrum of barium in highly excited Rydberg states |
Yang Hai-Feng (杨海峰), Gao Wei (高伟), Cheng Hong (成红), Liu Xiao-Jun (柳晓军), Liu Hong-Ping (刘红平) |
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China |
|
|
Abstract We present observations of Stark spectra of barium in highly excited Rydberg states in the energy region around n=35. The one-photon excitation concerns the π transition. The observed Stark spectra at electric fields ranging from 0 to 60 V·cm-1 are well explained by the diagonalization of the Hamiltonian incorporating the core effects. From the Stark maps, the anti-crossings between energy levels are identified experimentally and theoretically. The time of flight spectra at the specified Stark states are recorded, where the deceleration and acceleration of barium atoms are observed. It is well consistent with the prediction derived from the Stark maps on the point of view of energy conservation.
|
Received: 17 May 2012
Revised: 06 July 2012
Accepted manuscript online:
|
PACS:
|
32.60.+i
|
(Zeeman and Stark effects)
|
|
32.30.-r
|
(Atomic spectra?)
|
|
82.80.Rt
|
(Time of flight mass spectrometry)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174329 and 91121005) and the National Basic Research Program of China (Grant No. 2013CB922003). |
Corresponding Authors:
Liu Hong-Ping
E-mail: liuhongping@wipm.ac.cn
|
Cite this article:
Yang Hai-Feng (杨海峰), Gao Wei (高伟), Cheng Hong (成红), Liu Xiao-Jun (柳晓军), Liu Hong-Ping (刘红平) Stark spectrum of barium in highly excited Rydberg states 2013 Chin. Phys. B 22 013202
|
[1] |
Rojansky V 1929 Phys. Rev. 33 1
|
[2] |
Ciocca M, Burkhardt C E, Leventhal J J and Bergeman T 1992 Phys. Rev. A 45 4720
|
[3] |
Fabre C, Kaluzny Y, Calabrese R, Liang J, Goy P and Haroche S 1984 J. Phys. B 17 3217
|
[4] |
Lahaye C T W, Hogervorst W and van der Veldt T 1989 Z. Phys. D 13 107
|
[5] |
Courtney M, Spellmeyer N, Jiao H and Kleppner D 1995 Phys. Rev. A 51 3604
|
[6] |
Wang L, Quan W, Shen L, Yang H F, Shi T Y, Liu X J, Liu H P and Zhan M S 2009 Chin. Phys. B 18 4791
|
[7] |
Ito K, Masuda H, Morioka Y and Ueda K 1993 Phys. Rev. A 47 1187
|
[8] |
Littman M G, Zimmerman M L, Ducas T W, Freeman R R and Kleppner D 1976 Phys. Rev. Lett. 36 788
|
[9] |
Freeman R R, Economou N P, Bjorklund G C and Lu K T 1978 Phys. Rev. Lett. 41 1463
|
[10] |
Freeman R R and Economou N P 1979 Phys. Rev. A. 20 2356
|
[11] |
Sandner W, Safinya K A and Gallagher T F 1981 Phys. Rev. A 23 2448
|
[12] |
Ducas T W, Littman M G, Freeman R R and Kleppner D 1975 Phys. Rev. Lett. 35 366
|
[13] |
Littman M G, Kash M M and Kleppner D 1978 Phys. Rev. Lett. 41 103
|
[14] |
Rice M H and Good R H 1962 J. Opt. Soc. Am. 52 239
|
[15] |
Zimmerman M L, Littman M G, Kash M M and Kleppner D 1979 Phys. Rev. A 20 2251
|
[16] |
Lahaye C T W, Hogervorst W and Vassen W 1987 Z. Phys. D 7 37
|
[17] |
Zimmerman M L, Ducas T W, Littman M G and Kleppner D 1978 ewblock J. Phys. B 11 L11
|
[18] |
Jiang T, Bowden M D, Wagenaars E, Stoffels E and Kroesen G M W 2006 J. Phys. D 39 5216
|
[19] |
Sakimoto K 1986 J. Phys. B 19 3011
|
[20] |
Zhi M c, Dai C j and Li S B 2001 Chin. Phys. 10 929
|
[21] |
Seipp I and Taylor K T 1994 J. Phys. B 27 2785
|
[22] |
Simons G 1974 J. Chem. Phys. 60 645
|
[23] |
Menéndez J M, Martín I and Velasco A M 2005 Int. J. Quantum. Chem. 102 956
|
[24] |
Breeden T and Metcalf H 1981 Phys. Rev. Lett. 47 1726
|
[25] |
Procter S R, Yamakita Y, Merkt F and Softley T P 2003 Chem. Phys. Lett. 374 667
|
[26] |
Townsend D, Goodgame A L, Procter S R, Mackenzie S R and Softley T P 2001 J. Phys. B 34 439
|
[27] |
Yamakita Y, Procter S R, Goodgame A L, Softley T P and Merkt F 2004 J. Chem. Phys. 121 1419
|
[28] |
Bethlem H L, Berden G and Meijer G 1999 Phys. Rev. Lett. 83 1558
|
[29] |
Bethlem H L, Crompvoets F M H, Jongma R T, van de Meerakker S Y T and Meijer G 2002 Phys. Rev. A 65 053416
|
[30] |
van de Meerakker S Y T, Vanhaecke N and Meijer G 2006 Annu. Rev. Phys. Chem. 57 159
|
[31] |
Vliegen E and Merkt F 2006 J. Phys. B 39 L241
|
[32] |
Vliegen E, Worner H J, Softley T P and Merkt F 2004 Phys. Rev. Lett. 92 033005
|
[33] |
Hogan S D and Merkt F 2008 Phys. Rev. Lett. 100 043001
|
[34] |
Vliegen E, Hogan S D, Schmutz H and Merkt F 2007 Phys. Rev. A 76 023405
|
[35] |
Liu H P, Quan W, Shen L, Connerade J P and Zhan M S 2007 Phys. Rev. A 76 013412
|
[36] |
Yang H F, Gao W, Quan W, Liu X J and Liu H P 2012 Phys. Rev. A 85 032508
|
[37] |
Hu Z F, Zhao H T, Zhou S K, Gong S S and Zhan M S 2000 Chin. Phys. 9 805
|
[38] |
Menéndez J M, Martín I and Velasco A M 2004 Chem. Phys. Lett. 398 287
|
[39] |
Bachau H, Cormier E, Decleva P, Hansen J E and Martín F 2001 Rep. Prog. Phys. 64 1815
|
[40] |
de Boor C 1972 J. Approx. Theory 6 50
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|