Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 010505    DOI: 10.1088/1674-1056/22/1/010505
GENERAL Prev   Next  

Comparison study of typical algorithms for reconstructing time series from the recurrence plot of dynamical systems

Liu Jie (刘杰)a, Shi Shu-Ting (石书婷)b, Zhao Jun-Chan (赵军产)b
a Research Center of Nonlinear Science, Faculty of Mathematics and Computer Science, Wuhan Textile University, Wuhan 430073, China;
b Department of Mathematics, Faculty of Mathematics and Computer Science, Wuhan Textile University, Wuhan 430073, China
Abstract  Three most widely used methods for reconstructing the underlying time series via the recurrence plots (RPs) of a dynamical system are compared with each other in this paper. We aim to reconstruct a toy series, a periodical series, a random series, and a chaotic series to compare the effectiveness of the most widely used typical methods in terms of signal correlation analysis. The application of the most effective algorithm to the typical chaotic Lorenz system verifies the correctness of such an effective algorithm. It is verified that, based on the unthresholded RPs, one can reconstruct the original attractor by choosing different RP thresholds based on the Hirata algorithm. It is shown that, in real applications, it is possible to reconstruct the underlying dynamics by using quite little information from observations of real dynamical systems. Moreover, rules of the threshold chosen in the algorithm are also suggested.
Keywords:  recurrence plot      chaotic system      time series analysis      correlation analysis  
Received:  23 August 2012      Revised:  24 September 2012      Accepted manuscript online: 
PACS:  05.45.Tp (Time series analysis)  
  05.45.Ac (Low-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the Key Project of Ministry of Education of China (Grant No. 2010141) and the National Natural Science Foundation of China (Grant No. 61203159).
Corresponding Authors:  Liu Jie     E-mail:  liujie_hch@163.com

Cite this article: 

Liu Jie (刘杰), Shi Shu-Ting (石书婷), Zhao Jun-Chan (赵军产) Comparison study of typical algorithms for reconstructing time series from the recurrence plot of dynamical systems 2013 Chin. Phys. B 22 010505

[1] Ekmann J P, Kamphorst S O and Ruelle D 1987 Europhys. Lett. 4 973
[2] Marwan N, Romano M C, Thiel M and Kurths J 2007 Phys. Rep. 438 237
[3] Trulla L L, Giuliani A, Zbilut J P and Webber C L, 1996 Phys. Lett. A 223 255
[4] Zbilut J P and Webber C L 1998 Phys. Lett. A 246 122
[5] Zbilut J P, Giuliani A and Webber C L 2000 Phys. Lett. A 267 174
[6] Thiel M, Romano M and Kurths J 2004 Phys. Lett. A 330 343
[7] Thiel M, Romano M, Kurths J, Rolfs M and Kliegl R 2008 Phil. Trans. R. Soc. A 366 545
[8] Hirata Y, Horai S and Aihara K 2008 Eur. Phys. J. 164 13
[9] Gutierrez E and Zaldivar J M 2000 Earthquake Eng. Struct. Dyn. 29 1261
[10] Atay F M and Altintas Y 1999 Phys. Rev. E 59 6593
[11] Strozzi F, Zaldivar J M, Pioljansek K, Bono F and Gutierrez E 2009 EUR-Scientific and Technical Research Series (Luxembourg) pp. 1-56
[12] Tenenbaum J B, de Silva V and Langford J C 2000 Science 290 2319
[13] Lorenz E N 1963 J. Atmos. Sci. 20
[14] Kantz H and Schreiber T 2003 Nonlinear Time Series Analysis (Cambridge: Cambridge University Press)
[15] Donner R V, Small M, Donges J F, Marwan N, Zou Y, Xiang R and Kurths J 2011 Int. J. Bifurcat. Chaos. 21 1019
[16] Bian H R, Wang J, Han C X, Deng B, Wei X L and Che Yan Q 2011 Acta Phys. Sin. 60 118701 (in Chinese)
[17] Xie Y, Xu J X, Kang Y M, Yang H J and Hu S J 2003 Acta Phys. Sin. 52 1121 (in Chinese)
[18] Xia H C and Zhan Y Q 2004 Acta Phys. Sin. 53 1299 (in Chinese)
[19] Chen S G and Yang Z A 1997 Chin. Phys. 6 172
[20] Xia H C and Zhan Y Q 2004 Chin. Phys. 13 1299
[1] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[2] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[3] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[4] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[5] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[6] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[7] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[8] Acoustic wireless communication based on parameter modulation and complex Lorenz chaotic systems with complex parameters and parametric attractors
Fang-Fang Zhang(张芳芳), Rui Gao(高瑞), and Jian Liu(刘坚). Chin. Phys. B, 2021, 30(8): 080503.
[9] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[10] Energy behavior of Boris algorithm
Abdullah Zafar and Majid Khan. Chin. Phys. B, 2021, 30(5): 055203.
[11] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
[12] Transition to chaos in lid-driven square cavity flow
Tao Wang(王涛) and Tiegang Liu(刘铁钢). Chin. Phys. B, 2021, 30(12): 120508.
[13] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[14] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[15] Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors
Li-Lian Huang(黄丽莲), Shuai Liu(刘帅), Jian-Hong Xiang(项建弘), and Lin-Yu Wang(王霖郁). Chin. Phys. B, 2021, 30(10): 100506.
No Suggested Reading articles found!