Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 098704    DOI: 10.1088/1674-1056/ab9dee
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent

Ying Xu(徐莹)1,2, Minghua Liu(刘明华)3,1, Zhigang Zhu(朱志刚)1, Jun Ma(马军)1,4
1 Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China;
2 Department of Physics, Central China Normal University, Wuhan 430079, China;
3 Electrical Engineering College, Northwest Minzu University, Lanzhou 730124, China;
4 School of Science, Chongqing University of Posts and Telecommunications, Chongqing 430065, China
Abstract  

A feasible neuron model can be effective to estimate the mode transition in neural activities in a complex electromagnetic environment. When neurons are exposed to electromagnetic field, the continuous magnetization and polarization can generate nonlinear effect on the exchange and propagation of ions in the cell, and then the firing patterns can be regulated completely. The conductivity of ion channels can be affected by the temperature and the channel current is adjusted for regulating the excitability of neurons. In this paper, a phototube and a thermistor are used to the functions of neural circuit. The phototube is used to capture external illumination for energy injection, and a continuous signal source is obtained. The thermistor is used to percept the changes of temperature, and the channel current is changed to adjust the excitability of neuron. This functional neural circuit can encode the external heat (temperature) and illumination excitation, and the dynamics of neural activities is investigated in detail. The photocurrent generated in the phototube can be used as a signal source for the neural circuit, and the thermistor is used to estimate the conduction dependence on the temperature for neurons under heat effect. Bifurcation analysis and Hamilton energy are calculated to explore the mode selection. It is found that complete dynamical properties of biological neurons can be reproduced in spiking, bursting, and chaotic firing when the phototube is activated as voltage source. The functional neural circuit mainly presents spiking states when the photocurrent is handled as a stable current source. Gaussian white noise is imposed to detect the occurrence of coherence resonance. This neural circuit can provide possible guidance for investigating dynamics of neural networks and potential application in designing sensitive sensors.

Keywords:  thermosensitive neuron      thermistor      phototube      bifurcation      coherence resonance  
Received:  16 May 2020      Revised:  08 June 2020      Accepted manuscript online:  18 June 2020
PACS:  87.19.lq (Neuronal wave propagation)  
  87.18.Hf (Spatiotemporal pattern formation in cellular populations)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11672122).

Corresponding Authors:  Jun Ma     E-mail:  hyperchaos@lut.edu.cn,hyperchaos@163.com

Cite this article: 

Ying Xu(徐莹), Minghua Liu(刘明华), Zhigang Zhu(朱志刚), Jun Ma(马军) Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent 2020 Chin. Phys. B 29 098704

[1] Schwiening C J 2012 J. Physiol. 590 2571
[2] Hindmarsh J L and Rose R M 1984 Proc. R. Soc. B Biol. Sci. 221 87
[3] Jia B, Gu H G and Xue L 2017 Cogn. Neurodyn. 11 189
[4] Zhu F, Wang R, Pan X, et al. 2019 Cogn. Neurodyn. 13 75
[5] Wu F, Ma J, Zhang G, et al. 2019 Appl. Math. Comput. 347 590
[6] Wu F, Ma J, Zhang G, et al. 2020 Sci. Chin. Technol. Sci. 63 625
[7] Cunningham M O, Whittington M A, Bibbig A, et al. 2004 Proc. Natl. Acad. Sci. USA 101 7152
[8] Wu J and Ma S 2019 Nonlin. Dyn. 96 1895
[9] Han X, Bi Q, Ji P, et al. 2015 Phys. Rev. E 92 012911
[10] Han X, Liu Y, Bi Q, et al. 2019 Commun. Nonlin. Sci. Numer. Simulat. 72 16
[11] Allen N J and Eroglu C 2017 Neuron 96 697
[12] Chung W, Allen N J, Eroglu C, et al. 2015 CSH Perspect. Biol. 7 a020370
[13] Vasile F, Dossi E, Rouach N, et al. 2017 Brain Struct. Funct. 222 2017
[14] Huguet G, Joglekar A, Messi L M, et al. 2016 Biophys. J. 111 452
[15] Tang J, Zhang J, Ma J, et al. 2017 Sci. Chin. Technol. Sci. 60 1011
[16] Guo S, Tang J, Ma J, et al. 2017 Complexity 2017 4631602
[17] Wang C, Guo S, Xu Y, et al. 2017 Complexity 2017 5436737
[18] Bekkers J M 2003 Curr. Biol. 13 R433
[19] Yue Y, Liu L, Liu Y, et al. 2017 Nonlin. Dyn. 90 2893
[20] Uzun R, Yilmaz E, Ozer M, et al. 2017 Physica A 486 386
[21] Yilmaz E, Baysal V, Ozer M, et al. 2016 Physica A 444 538
[22] Yang X L, Yu Y H and Sun Z K 2017 Chaos 27 083117
[23] Gong Y B, Wang B Y and Xie H J 2016 Biosyst. 150 132
[24] Song X L, Wang C N, Ma J, et al. 2015 Sci. Chin. Technol. Sci. 58 1007
[25] Song X, Wang H, Chen Y, et al. 2019 Nonlin. Dyn. 96 2341
[26] Song X, Wang H, Chen Y, et al. 2018 Nonlin. Dyn. 94 141
[27] Zhao Z and Gu H 2017 Sci. Rep. 7 6760
[28] Kim Y, Park J and Choi Y K 2019 Antioxidants 8 121
[29] Wang C and Ma J 2018 Int. J. Mod. Phys. B 32 1830003
[30] Ma J, Yang Z, Yang L, et al. 2019 J. Zhejiang Univ. Sci. A 20 639
[31] Ma J and Tang J 2015 Sci. Chin. Technol. Sci. 58 2038
[32] Chua L O 2011 Appl. Phys. A 102 765
[33] Wang Z, Joshi S, Savelev S, et al. 2017 Nat. Mater. 16 101
[34] Muthuswamy B 2010 Int. J. Bifur. Chaos 20 1335
[35] Kim H, Sah M P, Yang C, et al. 2012 IEEE Tr. Circ. Syst. 59 2422
[36] Xu F, Zhang J, Fang T, et al. 2018 Nonlin. Dyn. 92 1395
[37] Serb A, Corna A, George R, et al. 2020 Sci. Rep. 10 2590
[38] Park S, Chu M, Kim J, et al. 2015 Sci. Rep. 5 10123
[39] Bao H, Zhang Y, Liu W, et al. 2020 Nonlin. Dyn. 100 937
[40] Lu L, Jia Y, Xu Y, et al. 2019 Sci. Chin. Technol. Sci. 62 427
[41] Jin W, Wang A, Ma J, et al. 2019 Sci. Chin. Technol. Sci. 62 2113
[42] Ge M, Lu L, Xu Y, et al. 2019 Euro. Phys. J.-Spec. Top. 228 2455
[43] Xu Y, Jia Y, Wang H, et al. 2019 Nonlin. Dyn. 95 3237
[44] Usha K and Subha P A 2019 Nonlin. Dyn. 96 2115
[45] Guo S, Xu Y, Wang C, et al. 2017 Chaos Solitons & Fractals. 105 120
[46] Qin H, Wang C, Cai N, et al. 2018 Physica A 501 141
[47] Abdelouahab M, Lozi R, Chua L O, et al. 2014 Int. J. Bifur. Chaos 24 1430023
[48] Xu Y M, Yao Z, Hobiny A, et al. 2019 Front. Inform. Technol. Electron. Eng. 20 571
[49] Wickramasinghe M and Kiss I Z 2013 Phys. Rev. E 88 062911
[50] Yao Z, Ma J, Yao Y, et al. 2019 Nonlin. Dyn. 96 205
[51] Pavlov A, Steur E, De Wouw N V, et al. 2009 Conference on decision and control pp. 5263-5268
[52] Liu Z, Wang C, Zhang G, et al. 2019 Int. J. Mod. Phys. B 33 1950170
[53] Gambuzza L V, Buscarino A, Fortuna L, et al. 2015 IEEE Tr. Circ. Syst. I 62 1175
[54] Gambuzza L V, Frasca M, Fortuna L, et al. 2017 IEEE Tr. Circ. Syst. I 64 2124
[55] Zhang X, Wu F, Ma J, et al. 2020 AEU-Int. J. Electron. Commun. 115 153050
[56] Zhang Y, Wang C N, Tang J, et al. 2020 Sci. Chin. Technol. Sci.
[57] Xu W and Sudhof T C 2013 Science 339 1290
[58] Landahl H D and Householder A S 1939 Psychometrika 4 255
[59] Yonezu H, Miho A, Himeno T, et al. 1989 Electr. Lett. 25 670
[60] Zhao L, Hong Q, Wang X, et al. 2018 Neurocomput. 314 207
[61] Liu Y, Xu W J, Ma J, et al. 2020 Front. Inform. Technol. Electron. Eng.
[62] Xu Y, Ma J, Zhan X, et al. 2019 Cogn. Neurodyn. 13 601
[63] Peixoto H M, Cruz R M, Moulin T C, et al. 2020 Front. Computat. Neurosci. 14 5
[64] Zhao Y and Boulant J A 2005 J. Physiol. 564 245
[65] Bolton C F, Sawa G M, Carter K, et al. 1981 J. Neurol. Neurosur. Psych. 44 407
[66] Fitzhugh R 1961 Biophys. J. 1 445
[67] Kyprianidis I M, Papachristou V, Stouboulos I N, et al. 2012 WSEAS Tran. Syst. 11 516
[68] Du L, Lei Y M and Deng Z C 2019 Sci. Chin. Technol. Sci. 62 1141
[69] Xiao W W, Gu H G and Liu M R 2016 Sci. Chin. Technol. Sci. 59 1943
[70] Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 775
[71] Perc M 2007 Chaos Solitons & Fractals. 31 64
[72] Perc M 2005 Phys. Rev. E 72 016207
[73] Sun X J, Perc M, Lu Q S, et al. 2008 Chaos 18 023102
[74] Li Y, Xu Y and Kurth J 2016 Phys. Rev. E 94 042222
[75] Xu Y, Wu J, Du L, et al. 2016 Chaos Solitons Fractal. 92 91
[76] Wang Z Q, Xu Y and Yang H 2016 Sci. Chin. Technol. Sci. 59 371
[77] Zhang H, Xu Y, Xu W, et al. 2012 Chaos 22 043130
[78] Liu Q, Xu Y, Kurth J, et al. 2018 App. Math. Mod. 64 249
[79] Valentia D, Augello G and Spagnolo B 2008 Euro. Phys. J. B 65 443
[80] Njitacke Z T, Doubla I S, Kengne J, et al. 2020 Chaos 30 023101
[81] Wouapi K M, Fotsin B H, Louodop F P, et al. 2020 Cogn. Neurody. 14 135
[82] Sun K, Liu L, Qiu J, et al. 2020 IEEE Tran. Fuzzy Syst.
[83] Sun K, Qiu J, Karimi H R, et al. 2020 IEEE Tran. Fuzzy Syst. https://doi.org/10.1109/tfuzz.2020. 2979129
[84] Sun K, Qiu J, Karimi H R, et al. 2020 IEEE Tran. Syst. Man. Cyber.
[85] Wang C and Ma J 2018 Int. J. Mod. Phys. B 32 1830003
[86] Wang C, Tang J and Ma J 2019 Euro. Phys. J. Spec. Top. 228 1907
[87] Hodgkin A L and Huxley A F 1952 J. Physiol. 116 497
[88] Hyun N G, Hyun K H, Hyun K B, et al. 2011 Korean J. Physiol. Pharmacol. 15 371
[89] Guo D D and Lü Z S 2019 Chin. Phys. B 28 110501
[90] Qu L H, Du L and Deng Z C 2018 Chin. Phys. B 27 118707
[91] Yuan Z, Feng P, Du M, et al. 2020 Chin. Phys. B 29 030504
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[3] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[4] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[5] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[6] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
[7] Multiple solutions and hysteresis in the flows driven by surface with antisymmetric velocity profile
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Zong-Qiang Ma(马宗强), De-Jun Sun(孙德军), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 090201.
[8] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[9] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[10] Enhance sensitivity to illumination and synchronization in light-dependent neurons
Ying Xie(谢盈), Zhao Yao(姚昭), Xikui Hu(胡锡奎), and Jun Ma(马军). Chin. Phys. B, 2021, 30(12): 120510.
[11] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[12] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[13] Transition to chaos in lid-driven square cavity flow
Tao Wang(王涛) and Tiegang Liu(刘铁钢). Chin. Phys. B, 2021, 30(12): 120508.
[14] Dual mechanisms of Bcl-2 regulation in IP3-receptor-mediated Ca2+ release: A computational study
Hong Qi(祁宏), Zhi-Qiang Shi(史志强), Zhi-Chao Li(李智超), Chang-Jun Sun(孙长君), Shi-Miao Wang(王世苗), Xiang Li(李翔), and Jian-Wei Shuai(帅建伟). Chin. Phys. B, 2021, 30(10): 108704.
[15] Control of firing activities in thermosensitive neuron by activating excitatory autapse
Ying Xu(徐莹) and Jun Ma(马军). Chin. Phys. B, 2021, 30(10): 100501.
No Suggested Reading articles found!