Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 103102    DOI: 10.1088/1674-1056/21/10/103102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

The 13-atom encapsulated gold cage clusters

Zhang Chuan-Hui (张川晖), Cui Hang (崔航), Shen Jiang (申江)
Institute of Applied Physics, University of Science and Technology Beijing, Beijing 100083, China
Abstract  The structure and the magnetic moment of transition metal encapsulated in a Au12 cage cluster have been studied by using the density functional theory. The results show that all of the transition metal atoms (TMA) can embed into the Au12 cage and increase the stability of the clusters except Mn. Half of them have the Ih or Oh symmetry. The curves of binding energy have oscillation characteristics when the extra-nuclear electrons increase; the reason for this may be the interaction between parity changes of extra-nuclear electrons and Au atoms. The curves of highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap also have oscillation characteristics when the extra-nuclear electrons increase. The binding energies of many M@Au12 clusters are much larger than that of the pure Au13 cluster, while the gaps of some of them are less than that of Au13, so maybe Cr@Au12, Nb@Au12, and W@Au12 clusters are most stable in fact. For magnetic calculations, some clusters are quenched totally, but the Au13 cluster has the largest magnetic moment of 5 μ B. When the number of extra-nuclear electrons of the encapsulated TMA is even, the magnetic moment of relevant M@Au12 cluster is even, and so are the odd ones.
Keywords:  cluster      icosahedral      cuboctahedral      fullerenes  
Received:  04 May 2012      Revised:  01 June 2012      Accepted manuscript online: 
PACS:  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding)  
  75.90.+w (Other topics in magnetic properties and materials)  
Corresponding Authors:  Zhang Chuan-Hui     E-mail:  ym23_24@yahoo.com.cn

Cite this article: 

Zhang Chuan-Hui (张川晖), Cui Hang (崔航), Shen Jiang (申江) The 13-atom encapsulated gold cage clusters 2012 Chin. Phys. B 21 103102

[1] Aiken J D and Finke R G 1999 J. Mol. Catal. A: Chem. 145 1
[2] Schmid G, Baumle M, Geerkens M, Heim I, Osemann C and Sawitowski T 1999 Chem. Soc. Rev. 28 179
[3] Khanna S N and Castleman A W 2003 Quantum Phenomena in Clusters and Nanostructures (Heidelberg: Springer-Verlag)
[4] Service R F 1996 Science 271 920
[5] Sakurai M, Watanabe K, Sumiyama K and Suzuki K 1999 J. Chem. Phys. 111 235
[6] Ma Q M, Wang J, Li Y C, Xie Z and Liu Y 2007 Chin. Phys. 16 3637
[7] Cheng Z D, Ling T and Zhu J 2010 Chin. Phys. B 19 057101
[8] Zhang M, Feng X J, Zhao L X, Zhang H Y and Luo Y H 2012 Chin. Phys. B 21 056102
[9] Stener M, Nardelli A and Fronzoni G 2008 Chem. Phys. Lett. 462 358
[10] Long J, Qiu Y X, Chen X Y and Wang S G 2008 J. Phys. Chem. C 112 12646
[11] Pyykko P and Runeberg N 2002 Angew. Chem. Int. Ed. 41 2174
[12] Li X, Kiran B, Li J, Zhai H J and Wang S L 2002 Angew. Chem. Int. Ed. 41 4786
[13] Autschbach J, Hess B A, Johansson M P, Neugebauer J, Patzschke M, Pyykko P, Reiher M and Sundholm D 2004 Phys. Chem. Chem. Phys. 6 11
[14] Qiu Y X, Wang S G and Eugen A W H 2004 Chem. Phys. Lett. 397 374
[15] Wang S Y, Yu J Z, Mizuseki H, Sun Q, Wang C Y and Kawazoe Y 2004 Phys. Rev. B 70 165413
[16] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[17] Hoheberg P C and Kohn W 1964 Phys. Rev. 136 864
[18] Mulliken R S 1955 J. Chem. Phys. 23 1841
[19] Delley B 1990 J. Chem. Phys. 92 50
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[3] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[4] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[5] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[6] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[7] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[8] Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe
Nadezda Korepanova, Long Gu(顾龙), Mihai Dima, and Hushan Xu(徐瑚珊). Chin. Phys. B, 2022, 31(2): 026103.
[9] Ultrafast Coulomb explosion imaging of molecules and molecular clusters
Xiaokai Li(李孝开), Xitao Yu(余西涛), Pan Ma(马盼), Xinning Zhao(赵欣宁), Chuncheng Wang(王春成), Sizuo Luo(罗嗣佐), and Dajun Ding(丁大军). Chin. Phys. B, 2022, 31(10): 103304.
[10] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[11] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[12] An optimized cluster density matrix embedding theory
Hao Geng(耿浩) and Quan-lin Jie(揭泉林). Chin. Phys. B, 2021, 30(9): 090305.
[13] Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading
Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军). Chin. Phys. B, 2021, 30(7): 073103.
[14] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[15] Evolution of ion-irradiated point defect concentration by cluster dynamics simulation
Shuaishuai Feng(冯帅帅), Shasha Lv(吕沙沙), Liang Chen(陈良), and Zhengcao Li(李正操). Chin. Phys. B, 2021, 30(5): 056105.
No Suggested Reading articles found!