Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 103103    DOI: 10.1088/1674-1056/21/10/103103
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Variational-integral perturbation corrections of some lower excited states for hydrogen atoms in magnetic fields

Yuan Lin (袁琳)a, Zhao Yun-Hui (赵云辉)b, Xu Jun (徐军)c, Zhou Ben-Hu (周本胡)a, Hai Wen-Hua (海文华)d
a Department of Physics, Shaoyang University, Shaoyang 422000, China;
b Department of Primary Education, Changsha Normal College, Changsha 410100, China;
c Center of Experimental Teaching for Common Basic Courses, South China Agriculture University, Guangzhou 510642, China;
d Department of Physics, Hunan Normal University, Changsha 410082, China
Abstract  A variational-integral perturbation method (VIPM) is established by combining the variational perturbation with the integral perturbation. The first-order corrected wave functions are constructed, and the second-order energy corrections for the ground state and several lower excited states are calculated by applying the VIPM to the hydrogen atom in a strong uniform magnetic field. Our calculations demonstrated that the energy calculated by the VIPM only shows a negative value, which indicates that the VIPM method is more accurate than the other methods. Our study indicated that the VIPM can not only increase the accuracy of the results but also keep the convergence of the wave functions.
Keywords:  variational-integral perturbation method      lower excited state      convergence  
Received:  12 April 2012      Revised:  05 July 2012      Accepted manuscript online: 
PACS:  31.15.xp (Perturbation theory)  
  32.60.+i (Zeeman and Stark effects)  
  03.65.Ge (Solutions of wave equations: bound states)  
  02.30.Rz (Integral equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10875039) and the Foundation of the Science and Technology of Hunan Province, China (Grant No. 2011CK3013).
Corresponding Authors:  Yuan Lin     E-mail:  xxbylxllww@sina.com

Cite this article: 

Yuan Lin (袁琳), Zhao Yun-Hui (赵云辉), Xu Jun (徐军), Zhou Ben-Hu (周本胡), Hai Wen-Hua (海文华) Variational-integral perturbation corrections of some lower excited states for hydrogen atoms in magnetic fields 2012 Chin. Phys. B 21 103103

[1] Lev Benjamin L, Meyer Edmund R, Hudson Eric R, Saywer Brian C, Bohn John L and Ye Jun 2006 Phys. Rev. A 74 061402
[2] Kleczewski Adam, Hoffman Matthew R, Sherman J A, Magnusmb Eric, Blinovabd B and Fortson E N 2012 Phys. Rev. A 85043418
[3] Horsewill A J and Abuokhumra S M M 2012 Phys. Rev. B 85 064512
[4] Formaset F G, Shlyaptsev V N and Rocca J J 1996 Phys. Rev. A 542474
[5] Garstang R H and Kemic S B 1974 Phys. Rev. A 85 103
[6] Zhao J J, Wang X F and Qiao H X 2011 Chin. Phys. B 20 053101
[7] Cohen R, Lodenquai J and Ruderman M 1970 Phys. Rev. Lett. 25 467
[8] Galindo A and Pascual P 1976 Nuovo Cimento B 34 155
[9] Ruder H, Wunner G, Herold H and Reinecke M 1985 J. Phys. B 14 L45
[10] Wunnder G 1986 J. Phys. B 19 1623
[11] Grozdanov T P and Taylor H S 1986 J. Phys. B 19 4075
[12] Chen A C 1984 Phys. Rev. A 29 2225
[13] Adams B G, Čižek J and Paldus J 1988 Adv. Quantum Chem. 19 1
[14] Silverstone H J and Moats R K 1981 Phys. Rev. A 23 1645
[15] Čižek J and Vrscay E R 1982 Int. J. Quantum Chem. 21 27
[16] Turbiner A V 1981 Z. Phys. A 308 111
[17] Le J C Guillou and Zinn-Justin J 1983 Ann. Phys. (NY) 147 57
[18] Turbiner A V 1984 J. Phys. A: Math. Gen. 17 859
[19] Janke W 1990 Phys. Rev. A 41 6071
[20] Johnson B R, Scheibner K F and Farrelly D 1983 Phys. Rev. Lett. 51 2280
[21] Arteca G A, Fernandez F M, Meson A M and Castro E A 1984 Physica A 128 253
[22] Fernandez F M and Castro E A 1985 Int. J. Quantum Chem. 28 603
[23] Fernandez F M, Ogilvie J F and Tipping R H 1987 J. Phys. A: Math. Gen. 20 3777
[24] Xu M, Linghu R F, Li Y F, Yang X D and Wang X L 2012 Phys. Rev. A 85 033412
[25] Guth E 1929 Z. Phys. 58 368
[26] Schiff L I and Snyder H 1939 Phys. Rev. 55 59
[27] Praddaude H C 1972 Phys. Rev. A 6 1321
[28] Killingbeck J 1981 J. Phys. B 14 L461
[29] Machet B and Vysotsky M I 2011 Phys. Rev. D 83 025022
[30] Efstathiou K, Lukina O V and Sadovskii D A 2008 Phys. Rev. Lett. 101 253003
[31] Smith E R, Henry R J W, Surmelian G L, O'Connell R F and Rajagopal A K 1972 Phys. Rev. D 6 3700
[32] Brandi H S 1975 Phys. Rev. A 19 1835
[33] Peek J M and Katriel J 1980 Phys. Rev. A 21 413
[34] Cohen M and Herman G 1981 J. Phys. B 14 2761
[35] Jason A C Gallas 1984 Phys. Rev. A 29 132
[36] Caswell W E and lepage G P 1986 Phys. Rev. Lett. 167 437
[37] Baldicchi M, Nesterenko A V, Prosperi G M and Simoto C 2008 Phys. Rev. 77 034013
[38] RutKowski A J 1998 J. Phys. B: At. Mol. Opt. Phys. 19 179
[39] Koehler T R 1968 Phys. Rev. 165 942
[40] Cea P and Tedesco L 1997 Phys. Rev. D 55 4967
[41] Hai W H, Feng M, Zhu X W, Shi L, Guo K L and Fang X M 2000 Phys. Rev. A 61 052105
[42] Hai W H, Zhu X W, Feng M, Shi L, Gao K L and Fang X M 2001 J. Phys. A: Math. Gen. 34 L79
[43] Zhao Y F, Hai W H, Zhao C L and Luo X P 2008 Chin. Phys. B 17 1720
[44] Hai W H 1998 Chin. Phys. Lett. 15 472
[45] Lee C H, Hai W H, Shi L, Zhu X W and Gao K L 2001 Phys. Rev. A 64 053604
[46] Hai W H, Lee C H, Chong G H and Shi L 2002 Phys. Rev. E 66 026202
[47] Hai W H, Huang H and Gao K L 2003 J. Phys. B 36 3055
[48] Hai W H, Feng M, Zhu X W, Shi L, Gao K L and Fang X M 1999 J. Phys. A: Math. Gen. 32 8265
[49] Hai W H 1998 Chin. Phys. Lett. 15 472
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[3] Truncated series solutions to the (2+1)-dimensional perturbed Boussinesq equation by using the approximate symmetry method
Xiao-Yu Jiao(焦小玉). Chin. Phys. B, 2018, 27(10): 100202.
[4] A novel stable value iteration-based approximate dynamic programming algorithm for discrete-time nonlinear systems
Yan-Hua Qu(曲延华), An-Na Wang(王安娜), Sheng Lin(林盛). Chin. Phys. B, 2018, 27(1): 010203.
[5] Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method
Hu Dou(窦虎), Hongmei Ma(马红梅), Yu-Bao Sun(孙玉宝). Chin. Phys. B, 2016, 25(9): 094221.
[6] Dynamic properties of chasers in a moving queue based on a delayed chasing model
Ning Guo(郭宁), Jian-Xun Ding(丁建勋), Xiang Ling(凌翔), Qin Shi(石琴), Reinhart Kühne. Chin. Phys. B, 2016, 25(5): 050505.
[7] A local energy-preserving scheme for Klein–Gordon–Schrödinger equations
Cai Jia-Xiang (蔡加祥), Wang Jia-Lin (汪佳玲), Wang Yu-Shun (王雨顺). Chin. Phys. B, 2015, 24(5): 050205.
[8] Analysis for flow of Jeffrey fluid with nanoparticles
T. Hayat, Sadia Asad, A. Alsaedi. Chin. Phys. B, 2015, 24(4): 044702.
[9] A meshless algorithm with moving least square approximations for elliptic Signorini problems
Wang Yan-Chong (王延冲), Li Xiao-Lin (李小林). Chin. Phys. B, 2014, 23(9): 090202.
[10] Precipitation efficiency and its relationship to physical factors
Zhou Yu-Shu (周玉淑), Li Xiao-Fan (李小凡), Gao Shou-Ting (高守亭). Chin. Phys. B, 2014, 23(6): 064210.
[11] Effects of water and ice clouds on cloud microphysical budget:An equilibrium modeling study
Gao Shou-Ting (高守亭), Li Xiao-Fan (李小凡), Zhou Yu-Shu (周玉淑). Chin. Phys. B, 2014, 23(2): 024204.
[12] A conservative Fourier pseudospectral algorithm for the nonlinear Schrödinger equation
Lv Zhong-Quan (吕忠全), Zhang Lu-Ming (张鲁明), Wang Yu-Shun (王雨顺). Chin. Phys. B, 2014, 23(12): 120203.
[13] Consensus problems of first-order dynamic multi-agent systems with multiple time delays
Ji Liang-Hao (纪良浩), Liao Xiao-Feng (廖晓峰). Chin. Phys. B, 2013, 22(4): 040203.
[14] A new finite difference scheme for a dissipative cubic nonlinear Schr"odinger equation
Zhang Rong-Pei(张荣培),Yu Xi-Jun(蔚喜军),and Zhao Guo-Zhong(赵国忠). Chin. Phys. B, 2011, 20(3): 030204.
[15] A meshless method for the nonlinear generalized regularized long wave equation
Wang Ju-Feng(王聚丰), Bai Fu-Nong(白福浓), and Cheng Yu-Min(程玉民). Chin. Phys. B, 2011, 20(3): 030206.
No Suggested Reading articles found!