Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100206    DOI: 10.1088/1674-1056/21/10/100206
GENERAL Prev   Next  

Analytical investigation of the boundary-triggered phase transition dynamics in a cellular automata model with a slow-to-start rule

Jia Ning (贾宁), Ma Shou-Feng (马寿峰), Zhong Shi-Quan (钟石泉)
Institute of Systems Engineering, Tianjin University, Tianjin 300072, China
Abstract  Previous studies suggest that there are three different jam phases in the cellular automata automaton model with a slow-to-start rule under open boundaries. In the present paper, the dynamics of each free-flow-jam phase transition is studied. By analysing the microscopic behaviour of the traffic flow, we obtain analytical results on the phase transition dynamics. Our results can describe the detailed time evolution of the system during phase transition, while they provide good approximation for the numerical simulation data. These findings can perfectly explain the microscopic mechanism and details of the boundary-triggered phase transition dynamics.
Keywords:  traffic flow      boundary-triggered phase transition      cellular automata      time evolution      analytical solution  
Received:  20 February 2012      Revised:  15 March 2012      Accepted manuscript online: 
PACS:  02.50.-r (Probability theory, stochastic processes, and statistics)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  45.70.-n (Granular systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 70971094 and 50908155) and the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT).
Corresponding Authors:  Jia Ning     E-mail:  jianing.BLGT@gmail.com

Cite this article: 

Jia Ning (贾宁), Ma Shou-Feng (马寿峰), Zhong Shi-Quan (钟石泉) Analytical investigation of the boundary-triggered phase transition dynamics in a cellular automata model with a slow-to-start rule 2012 Chin. Phys. B 21 100206

[1] Huang P H, Kong L J and Liu M R 2002 Chin. Phys. 11 678
[2] Qian Y S, Shi P J, Zeng Q, Ma C X, Lin F, Sun P and Wang H L 2010 Chin. Phys. B 19 048201
[3] Hu S X, Gao K, Wang B H and Lu Y F 2008 Chin. Phys. B 17 1863
[4] Zheng L, Ma S F and Jia N 2010 Acta Phys. Sin. 59 4490 (in Chinese)
[5] Nagel K and Schreckenberg M 1992 J. Phys. I (France) 2 2221
[6] Cheybani S, Kertesz J and Schreckenberg M 2000 Phys. Rev. E 63 016107
[7] Cheybani S, Kertesz J and Schreckenberg M 2000 Phys. Rev. E 63 016108
[8] Jiang R and Wu Q S 2002 Phys. Rev. E 66 036104
[9] Jia B, Jiang R and Wu Q S 2004 Phys. Rev. E 69 056105
[10] Neumann T and Wagner P 2008 Eur. Phys. J. B 63 255
[11] Huang D W and Huang W N 2002 Physica A 312 597
[12] Barlovic R, Huisinga T, Schadschneider A and Schreckenberg M 2002 Phys. Rev. E 66 046113
[13] Huang D W 2008 Physica A 387 587
[14] Jia N and Ma S F 2009 Phys. Rev. E 79 031115
[15] Jia N and Ma S F 2009 Phys. Rev. E 80 041105
[1] Pedestrian evacuation simulation in multi-exit case:An emotion and group dual-driven method
Yong-Xing Li(李永行), Xiao-Xia Yang(杨晓霞), Meng Meng(孟梦), Xin Gu(顾欣), Ling-Peng Kong(孔令鹏). Chin. Phys. B, 2023, 32(4): 048901.
[2] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[3] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[4] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
[5] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[6] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[7] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[8] Modeling and analysis of car-following behavior considering backward-looking effect
Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛). Chin. Phys. B, 2021, 30(3): 034501.
[9] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[10] An extended cellular automata model with modified floor field for evacuation
Da-Hui Qin(秦大辉), Yun-Fei Duan(段云飞), Dong Cheng(程栋), Ming-Zhu Su(苏铭著), Yong-Bo Shao(邵永波). Chin. Phys. B, 2020, 29(9): 098901.
[11] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[12] Damping of displaced chaotic light field in amplitude dissipation channel
Ke Zhang(张科), Lan-Lan Li(李兰兰), and Hong-Yi Fan(范洪义)†. Chin. Phys. B, 2020, 29(10): 100302.
[13] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[14] Current-phase relations of a ring-trapped Bose-Einstein condensate with a weak link
Xiu-Rong Zhang(张秀荣), Wei-Dong Li(李卫东). Chin. Phys. B, 2019, 28(1): 010303.
[15] A macroscopic traffic model based on weather conditions
Zawar H. Khan, Syed Abid Ali Shah, T. Aaron Gulliver. Chin. Phys. B, 2018, 27(7): 070202.
No Suggested Reading articles found!