Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 108701    DOI: 10.1088/1674-1056/21/10/108701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Spiking sychronization regulated by noise in three types of Hodgkin–Huxley neuronal networks

Zhang Zheng-Zhen (张争珍), Zeng Shang-You (曾上游), Tang Wen-Yan (唐文艳), Hu Jin-Lin (胡锦霖), Zeng Shao-Wen (曾紹稳), Ning Wei-Lian (宁维莲), Qiu Yi (邱怡), Wu Hui-Si (吴慧思)
College of Electronic Engineering, Guangxi Normal University, Guilin 541004, China
Abstract  In this paper, we study spiking synchronization in three different types of Hodgkin-Huxley neuronal networks, which are the small-world, regular, and random neuronal networks. All the neurons are subjected to subthreshold stimulus and external noise. It is found that in each of all the neuronal networks there is an optimal strength of noise to induce the maximal spiking synchronization. We further demonstrate that in each of the neuronal networks there is a range of synaptic conductance to induce the effect that an optimal strength of noise maximizes the spiking synchronization. Only when the magnitude of the synaptic conductance is moderate, will the effect be considerable. However, if the synaptic conductance is small or large, the effect vanishes. As the connections between neurons increase, the synaptic conductance to maximize the effect decreases. Therefore, we show quantitatively that the noise-induced maximal synchronization in the Hodgkin-Huxley neuronal network is a general effect, regardless of the specific type of neuronal network.
Keywords:  spiking synchronization      neuronal network      noise  
Received:  03 December 2011      Revised:  03 May 2012      Accepted manuscript online: 
PACS:  87.19.lm (Synchronization in the nervous system)  
  87.19.L- (Neuroscience)  
  87.19.lj (Neuronal network dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11065003), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2011GXNSFA018129), and the Research Funding of Guangxi Provincial Education Department, China (Grant No. 201012MS026).
Corresponding Authors:  Zeng Shang-You     E-mail:  zsy@mailbox.gxnu.edu.cn

Cite this article: 

Zhang Zheng-Zhen (张争珍), Zeng Shang-You (曾上游), Tang Wen-Yan (唐文艳), Hu Jin-Lin (胡锦霖), Zeng Shao-Wen (曾紹稳), Ning Wei-Lian (宁维莲), Qiu Yi (邱怡), Wu Hui-Si (吴慧思) Spiking sychronization regulated by noise in three types of Hodgkin–Huxley neuronal networks 2012 Chin. Phys. B 21 108701

[1] Huang L, Feng R and Wang M 2004 Phys. Lett. A 320 271
[2] Dibner C, Schibler U and Albrecht U 2010 Ann. Rev. Physiol. 72 517
[3] Rossoni E, Chen Y, Ding M and Feng J 2005 Phys. Rev. E 71 061904
[4] Ward L M 2003 Trends in Cognitive Sciences 7 553
[5] Melloni L, Molina C, Pena M, Torres D, Singer W and Rodriguez E 2007 J. Neurosci. 27 2858
[6] Wu X, Chen X, Li Z, Han S and Zhang D 2007 NeuroImage 35 1654
[7] Klimesch W, Freunberger R and Sauseng P 2010 Neurosci. Biobehav. Rev. 34 1002
[8] Arecchi F T 2004 Physica A 338 218
[9] Watts D J and Strogaz H S 1998 Nature 393 440
[10] Qian Y, Huang X, Hu G and Liao X 2010 Phys. Rev. E 81 036101
[11] Liao W, Ding J, Marinazzo D, Xu Q, Wang Z, Yuan C, Zhang Z, Lu G and Chen H 2011 NeuroImage 54 2683
[12] Bullmore E and Sporns O 2009 Nat. Rev. Neurosci. 10 187
[13] He Y, Chen Z J and Evans A C 2007 Cereb. Cortex 17 2407
[14] Timme M, Wolf F and Geisel T 2002 Phys. Rev. Lett. 89 258701
[15] Gelenbe E and Timotheou S 2008 Neural Comp. 20 2308
[16] Börgers C and Kopell N 2003 Neural Comp. 15 509
[17] Zeng S Y, Tang Y and Jung P 2007 Phys. Rev. E 76 011905
[18] Hänggi P 2002 Chem. Phys. Chem. 3 285
[19] Lindner B, García-Ojalvo J, Neiman A and Schimansky-Geier L 2004 Phys. Rep. 392 321
[20] Liu S B, Wu Y, Hao Z W, Li Y J and Jia N 2012 Acta Phys. Sin. 61 020503 (in Chinese)
[21] Xu C and Kang Y M 2011 Acta Phys. Sin. 60 108701 (in Chinese)
[22] Liu S J, Wang Q, Liu B, Yan S W and Fumihiko S 2011 Chin. Phys. B 20 128703
[23] Li L, Jin Z L and Li B 2011 Acta Phys. Sin. 60 048703 (in Chinese)
[24] Lindner J F, Bennett M and Wiesenfeld K 2006 Phys. Rev. E 73 031107
[25] Toral R, Mirasso C R and Gunton J D 2003 Europhys. Lett. 61 162
[26] Perc M 2008 Phys. Rev. E 78 036105
[27] Gao Z, Hu B and Hu G 2001 Phys. Rev. E 65 016209
[28] Cao J, Li P and Wang W 2006 Phys. Lett. A 353 318
[29] Li P, Cao J and Wang Z 2007 Physica A 373 261
[30] Chen M and Chen W 2009 Chaos, Solitons & Fractals 41 2716
[31] Han F, Lu Q S, Wiercigroch M and Ji Q B 2009 Chin. Phys. B 18 482
[32] Gao M and Cui B 2009 Chin. Phys. B 18 76
[33] Tang Y, Zhong H and Fang J 2008 Chin. Phys. B 17 4080
[34] Shi X and Lu Q 2005 Chin. Phys. 14 77
[35] Gong Y, Wang M, Hou Z and Xin H 2005 Chem. Phys. Chem. 6 1042
[36] Masuda N and Aihara K 2004 Biological Cybernetics 90 302
[37] Yu Y, Wang W, Wang J and Liu F 2001 Phys. Rev. E 63 021907
[38] Zeng S and Jung P 2004 Phys. Rev. E 70 011903
[39] Bernander O, Douglas R J, Martin K A and Koch C 1991 Proc. Natl. Acad. Sci. 88 11569
[40] Megias M, Emri Z S, Ereund T F and Gulyas A I 2001 Neuroscience 102 527
[41] Newman M E J and Watts D J 1999 Phys. Lett. A 360 341
[42] Ozer M and Uzuntarla M 2008 Phys. Lett. A 372 4603
[43] Neiman A, Silchenko A, Anishchenko V and Schimansky-Geier L 1998 Phys. Rev. E 58 7118
[44] Hu B and Zhou C 2000 Phys. Rev. E 61 R1001
[45] Osipov G V, Pikovsky A S, Rosenblum M G and Kurths J 1997 Phys. Rev. E 55 2353
[46] Neiman A, Schimansky-Geier L, Cornell-Bell A and Moss F 1999 Phys. Rev. Lett. 83 4896
[47] Gang H, Ditzinger T, Ning C Z and Haken H 1993 Phys. Rev. Lett. 71 807
[48] Yu Y, Wang W, Wang J and Liu F 2001 Phys. Rev. E 63 021907
[49] Li S G, Neiman A and Kim S 1998 Phys. Rev. E 57 3292
[50] Kwon O and Moon H T 2002 Phys. Lett. A 298 319
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[3] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[4] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[5] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[6] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[7] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[8] Fast prediction of aerodynamic noise induced by the flow around a cylinder based on deep neural network
Hai-Yang Meng(孟海洋), Zi-Xiang Xu(徐自翔), Jing Yang(杨京), Bin Liang(梁彬), and Jian-Chun Cheng(程建春). Chin. Phys. B, 2022, 31(6): 064305.
[9] Nano-friction phenomenon of Frenkel—Kontorova model under Gaussian colored noise
Yi-Wei Li(李毅伟), Peng-Fei Xu(许鹏飞), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(5): 050501.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Acoustic multipath structure in direct zone of deep water and bearing estimation of tow ship noise of towed line array
Zhi-Bin Han(韩志斌), Zhao-Hui Peng (彭朝晖), Jun Song(宋俊), Lei Meng(孟雷), Xiu-Ting Yang(杨秀庭), and Bing Su(苏冰). Chin. Phys. B, 2022, 31(5): 054301.
[12] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[13] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[14] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[15] Development of series SQUID array with on-chip filter for TES detector
Wentao Wu(伍文涛), Zhirong Lin(林志荣), Zhi Ni(倪志), Peizhan Li(李佩展), Tiantian Liang(梁恬恬), Guofeng Zhang(张国峰), Yongliang Wang(王永良), Liliang Ying(应利良), Wei Peng(彭炜), Wen Zhang(张文), Shengcai Shi(史生才), Lixing You(尤立星), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(2): 028504.
No Suggested Reading articles found!