Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 090502    DOI: 10.1088/1674-1056/21/9/090502
GENERAL Prev   Next  

Temperature dependence of the energy-level shift induced by the Bose–Einstein condensation of photons

Zhang Jian-Jun (张建军), Cheng Ze (成泽), Yuan Jian-Hui (袁建辉), Zhang Jun-Pei (张俊佩)
School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  We investigate the energy-level shift of a hydrogen atom in a two-dimensional optical microcavity, where there exists a Bose-Einstein condensation of photons. It is found that below the critical temperature Tc, the energy-level shift of the bound electron is dependent on temperature, and it is a monotonically increasing function of the absolute temperature T. Especially, at the absolute zero temperature, the energy-level shift entirely comes from the Lamb shift, and the atom can be treated approximately, that is, in vacuum.
Keywords:  Bose-Einstein condensation      energy-level shift      two-level atom  
Received:  06 January 2012      Revised:  04 April 2012      Accepted manuscript online: 
PACS:  05.30.Jp (Boson systems)  
  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10174024 and 10474025).
Corresponding Authors:  Zhang Jian-Jun     E-mail:  ruoshui789@gmail.com

Cite this article: 

Zhang Jian-Jun (张建军), Cheng Ze (成泽), Yuan Jian-Hui (袁建辉), Zhang Jun-Pei (张俊佩) Temperature dependence of the energy-level shift induced by the Bose–Einstein condensation of photons 2012 Chin. Phys. B 21 090502

[1] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[2] Davis K B, Mewes M O, Andrews M R, van Druten N J, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[3] Bradley C C, Sackett C A and Hulet R G 1997 Phys. Rev. Lett. 78 985
[4] Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Hecker Denschlag J and Grimm R 2003 Science 302 2101
[5] Deng H, Weihs G, Bloch J and Yamamoto Y 2002 Science 298 199
[6] Wang Y Z, Zhou S Y, Long Q, Zhou S Y and Fu H X 2003 Chin. Phys. Lett. 20 799
[7] Balili R, Hartwell V, Snoke D, Pfeiffer L and West K 2007 Science 316 1007
[8] Demokritov S O, Demidov V E, Dzyapko O, Melkov G A, Serga A A, Hillebrands B and Slavin A N 2006 Nature 443 430
[9] Ortiz G and Dukelsky J 2005 Phys. Rev. A 72 043611
[10] Li S C and Duan W S 2009 Chin. Phys. B 18 4177
[11] Zhou L, Kong L B and Zhan M S 2008 Chin. Phys. B 17 1601
[12] Klaers J, Schmitt J, Vewinger F and Weitz M 2010 Nature 468 545
[13] Lamb W E and Retherford R C 1947 Phys. Rev. 72 241
[14] Bethe H A 1947 Phys. Rev. 72 339
[15] Lundeen S R and Pipkin F M 1981 Phys. Rev. Lett. 46 232
[16] Barton G 1974 J. Phys. B 7 2134
[17] Horak P, Domokos P and Ritsch H 2003 Euro. Phys. Lett. 61 459
[18] Kleppner D 1981 Phys. Rev. Lett. 47 233
[19] Ivanov A L and Haug H 1995 Jpn. J. Appl. Phys. Suppl. 34 143
[20] Walsh J E 1971 Phys. Rev. Lett. 27 208
[21] Lach G, Jeziorski B and Szalewicz K 2004 Phys. Rev. Lett. 92 233001
[22] Klaers J, Vewinger F and Weitz M 2010 Nature Phys. 6 512
[23] Pitaevskii L and Stringari S 2003 Bose-Einstein Condensation (New York: Oxford University Press) pp. 27-30
[24] Bogoliubov N 1947 J. Phys., U.S.S.R 11 23
[25] Pines D 1961 The Many-Body Problem (New York: Benjamin)
[26] Pitaevskii L and Stringari S 2003 Bose-Einstein Condensation (New York: Oxford University Press) pp. 36,37
[27] Welton T A 1948 Phys. Rev. 74 1157
[28] Milonni P W 1982 Phys. Rev. A 25 1315
[29] Drake G W F and Swainson R A 1990 Phys. Rev. A 41 1243
[30] Grotch H 1988 Phys. Scr. T21 86
[31] Cheng Z 2002 J. Opt. Soc. Am. B 19 1962
[32] Leggett A J 2001 Rev. Mod. Phys. 73 307
[1] Space continuous atom laser in one dimension
Yi Qin(秦毅), Xiao-Yang Shen(沈晓阳), Wei-Xuan Chang(常炜玄), and Lin Xia(夏林). Chin. Phys. B, 2023, 32(1): 013701.
[2] Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军). Chin. Phys. B, 2021, 30(11): 110301.
[3] One-dimensional atom laser in microgravity
Yi Qin(秦毅), Xiaoyang Shen(沈晓阳), and Lin Xia(夏林). Chin. Phys. B, 2021, 30(11): 110306.
[4] Ultradilute self-bound quantum droplets in Bose-Bose mixtures at finite temperature
Jia Wang(王佳), Xia-Ji Liu(刘夏姬), and Hui Hu(胡辉). Chin. Phys. B, 2021, 30(1): 010306.
[5] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[6] Enhanced second harmonic generation in a two-dimensional optical micro-cavity
Jian-Jun Zhang(张建军), Hui-Fang Wang(王慧芳), Jun-Hua Hou(候俊华). Chin. Phys. B, 2018, 27(3): 034207.
[7] Effects of a finite number of particles on the thermodynamic properties of a harmonically trapped ideal charged Bose gas in a constant magnetic field
Duan-Liang Xiao(肖端亮), Meng-Yun Lai(赖梦云), Xiao-Yin Pan(潘孝胤). Chin. Phys. B, 2016, 25(1): 010307.
[8] Vacuum induced transparency and slow light phenomena in a two-level atomic ensemble controlled by a cavity
Guo Yu-Jie (郭玉杰), Nie Wen-Jie (聂文杰). Chin. Phys. B, 2015, 24(9): 094205.
[9] Spin-orbit coupled Bose-Einstein condensates with Rydberg-dressing interaction
Lü Hao (吕昊), Zhu Shao-Bing (朱少兵), Qian Jun (钱军), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2015, 24(9): 090308.
[10] An effective method of accelerating Bose gases using magnetic coils
Lu Hai-Chang (卢海昌), Zhai Yue-Yang (翟跃阳), Pan Rui-Zhi (潘睿智), Yang Shi-Feng (杨仕锋). Chin. Phys. B, 2014, 23(9): 093701.
[11] Single photon transport properties in coupled cavity arrays nonlocally coupled to a two-level atom in the presence of dissipation
Hai Lian (海莲), Tan Lei (谭磊), Feng Jin-Shan (冯金山), Xu Wen-Bin (徐文斌), Wang Bin (王彬). Chin. Phys. B, 2014, 23(2): 024202.
[12] The squeezing dynamics of two independent atoms by detuning in two non-Markovian environments
Zou Hong-Mei (邹红梅), Fang Mao-Fa (方卯发), Yang Bai-Yuan (杨百元). Chin. Phys. B, 2013, 22(12): 120303.
[13] Influence of selective atomic measurement on the entanglement properties of a two-atom outside cavity
Lu Dao-Ming(卢道明) . Chin. Phys. B, 2011, 20(3): 030301.
[14] The breaking point between fast- and slow-light in adegenerate two-level atomic system
Li Lu-Ming(李路明), Hu Zhen-Yan(胡振燕 ), Luo Bin(罗斌), and Guo Hong(郭弘). Chin. Phys. B, 2010, 19(6): 064206.
[15] Effect of cavity dissipation on the emission spectrum of an atom interacting with a field in the dispersive approximation
Wang Hai-Jun(王海军) and Gao Yun-Feng(高云峰) . Chin. Phys. B, 2010, 19(1): 014209.
No Suggested Reading articles found!