|
|
Stochastic properties of tumor growth with coupling between non-Gaussian and Gaussian noise terms |
Jiang Li-Li (蒋莉莉), Luo Xiao-Qin (罗晓琴), Wu Dan (吴丹), Zhu Shi-Qun (朱士群) |
School of Physical Science and Technology, Soochow University, Suzhou 215006, China |
|
|
Abstract Dynamical behavior of tumor-growth model with coupling between non-Gaussian and Gaussian noise terms is investigated. The departure from the Gaussian noise can not only reduce the probability of tumor cells in the active state, induce the minimum of the average tumor-cell population to move toward a smaller non-Gaussian noise, but also decrease the mean first-passage time. The increase of white-noise intensity can increase the tumor-cell population and shorten the mean first-passage time, while the coupling strength between noise terms has opposite effects, and the noise correlation time has a very small effect.
|
Received: 13 December 2011
Revised: 23 April 2012
Accepted manuscript online:
|
PACS:
|
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
05.40.Ca
|
(Noise)
|
|
05.10.Gg
|
(Stochastic analysis methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11005077, 11105095, and 11074184) and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 10KJD140003). |
Corresponding Authors:
Luo Xiao-Qin, Zhu Shi-Qun
E-mail: xqluo@suda.edu.cn; szhu@suda.edu.cn
|
Cite this article:
Jiang Li-Li (蒋莉莉), Luo Xiao-Qin (罗晓琴), Wu Dan (吴丹), Zhu Shi-Qun (朱士群) Stochastic properties of tumor growth with coupling between non-Gaussian and Gaussian noise terms 2012 Chin. Phys. B 21 090503
|
[1] |
Ehrlich P 1909 Ned. Tijdschr. Geneeskd. 5 273 (in Dutch)
|
[2] |
Burnet F M 1957 Br. Med. J. 1 841
|
[3] |
Dunn G P, Old L J and Schreiber R D 2004 Annu. Rev.Immunol. 22 329
|
[4] |
Kim R, Emi M and Tanabe K 2007 Immunol. 121 1
|
[5] |
Bose T and Trimper S 2009 Phys. Rev. E 79 051903
|
[6] |
Vilar J M G and Sol′e R V 1998 Phys. Rev. Lett. 80 18
|
[7] |
Cai J C, Wang C J and Mei D C 2006 Chin. Phys. Lett.24 1162
|
[8] |
Escudero C 2006 Phys. Rev. E 73 020902
|
[9] |
Fiasconaro A and Nowak E G 2006 Phys. Rev. E 74041904
|
[10] |
Zhong W R, Shao Y Z and He Z H 2006 Phys. Rev. E 73060902
|
[11] |
Zhong W R, Shao Y Z and He Z H 2006 Phys. Rev. E 74011916
|
[12] |
Br′u A, Albertos S, L′opez Garc′?a-Asenjo J A and Br′u I2004 Phys. Rev. Lett. 92 238101
|
[13] |
Wang C J, Wei Qun, Zheng B B and Mei D C 2008 Chin.Phys. Soc. 57 3
|
[14] |
Jia Z L 2010 Chin. Phys. B 19 020504
|
[15] |
Tian J and Chen Y 2010 Chin. Phys. Lett. 27 030502
|
[16] |
Du L C and Mei D C 2010 Phys. Lett. A 374 3275
|
[17] |
d’Onofrio A 2010 Phys. Rev. E 81 021923
|
[18] |
Teng M W L, Swann J B, Koebel C M, Schreiber R D,Smyth M J and Leukoc J 2008 Biol. 84 998
|
[19] |
Wang C J 2010 Chin. Phys. B 19 030503
|
[20] |
Wang C J and Mei D C 2008 Chin. Phys. Soc. 57 7
|
[21] |
Wang B 2011 Chin. Phys. B 20 114207
|
[22] |
Duarte J R R, Vermelho M V D and Lyra M L 2008 Phys-ica A 387 1446
|
[23] |
Newman M E J 2005 Contemp. Phys. 46 323
|
[24] |
Wiesenfeld K, Pierson D, Pantazelou E, Dames Ch andMoss F 1994 Phys. Rev. Lett. 72 2125
|
[25] |
Nozaki D, Mar D J, Grigg P and Collins J J 1999 Phys.Rev. Lett. 82 2402
|
[26] |
Zhang J J and Jin Y F 2012 Chin. Phys. Soc. 61 13
|
[27] |
Fuentes M A, Toral R and Wio H S 2001 Physica A 295114
|
[28] |
Fuentes M A, Wio H S and Toral R 2002 Physica A 30391
|
[29] |
Wio H S and Toral R 2004 Physica D 193 161
|
[30] |
Wu D, Luo X and Zhu S 2007 Physica A 373 203
|
[31] |
Valleron A J and Macdonald P D M 1978 Biomathematicsand Cell Kinetics (Elsevier: North-Holland)
|
[32] |
Murray J D 2002 Mathematical Biology (vol. 1) (Berlin:Springer-Verlag)
|
[33] |
Murray J D 2003 Mathematical Biology (vol. 2) (Berlin:Springer-Verlag)
|
[34] |
Bellomo N and Delitala M 2008 Phys. Life. Rev. 5 183
|
[35] |
Br′u A, Albertos S, Subiza J L, L′opez J, Asenjo G andBr′u I 2003 Biophys. J. 85 2948
|
[36] |
Gardiner C W 1985 Handbook of Stochastic Methods (2ndedn.) (Berlin: Springer)
|
[37] |
Wio H S 1994 An Introduction to Stochastic Processes andNonequilibrium Statistical Physics (Singapore: World Scientific)
|
[38] |
van Kampen N G 1982 Stochastic Processes in Physicsand Chemistry (Elsevier: North-Holland)
|
[39] |
H¨anggi P, Talkner P and Borkovec M 1990 Rev. Mod.Phys. 62 251
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|