Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 120303    DOI: 10.1088/1674-1056/22/12/120303
GENERAL Prev   Next  

The squeezing dynamics of two independent atoms by detuning in two non-Markovian environments

Zou Hong-Mei (邹红梅), Fang Mao-Fa (方卯发), Yang Bai-Yuan (杨百元)
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control, Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081, China
Abstract  The squeezing dynamics of two independent two-level atoms off-resonantly coupled to two non-Markovian reservoirs is studied by the time-convolutionless master-equation approach. We find that the squeezing of two atoms is dependent on both detuning and the non-Markovian effect. Our results show that, in the non-Markovian regime, the bigger the detuning and the stronger the non-Markovian effect are, the larger the strength of the squeezing is. And the squeezing of two atoms can be effectively protected for a long time when both the non-Markovian effect and detuning are present simultaneously. The physical mechanism is that the detuning not only can promote the feedback of information from the environment into the atomic system but also can greatly suppress the atomic decay in the non-Markovian regime.
Keywords:  non-Markovian effect      detuning      squeezing      two-level atom  
Received:  11 April 2013      Revised:  10 May 2013      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: Project supported by the Natural Science Foundation of Hunan Province, China (Grant No. 09JJ5001), the Science and Technology Plan of Hunan Province, China (Grant No. 2010FJ3148), and the National Natural Science Foundation of China (Grant No. 10374025).
Corresponding Authors:  Fang Mao-Fa     E-mail:  mffang@hunnu.edu.cn

Cite this article: 

Zou Hong-Mei (邹红梅), Fang Mao-Fa (方卯发), Yang Bai-Yuan (杨百元) The squeezing dynamics of two independent atoms by detuning in two non-Markovian environments 2013 Chin. Phys. B 22 120303

[1] Heisenberg W 1927 Z. Phys. 43 172
[2] Robertson H P 1929 Phys. Rev. 34 163
[3] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[4] Gühne O and Toth G 2009 Phys. Rep. 474 1
[5] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722
[6] Simon R 2000 Phys. Rev. Lett. 84 2726
[7] Gühne O 2004 Phys. Rev. Lett. 92 117903
[8] Huang Y 2010 Phys. Rev. A 82 012335
[9] Huang Y 2010 Phys. Rev. A 82 069903
[10] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[11] Massar S and Spindel P 2008 Phys. Rev. Lett. 100 190401
[12] Wódkiewicz K and Eberly J H 1987 J. Opt. Soc. Am. B 2 458
[13] Wódkiewicz K 1985 Phys. Rev. B 32 4750
[14] Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, Mckenzie K, Ward R, Vass S, Weinstein A J and Mavalvala N 2008 Nat. Phys. 4 472
[15] Wineland D J, BolIonger J J and Itano W M 1994 Phys. Rev. A 50 67
[16] Sorensen J L, Hald J and Polzik E S 1998 Phys. Rev. Lett. 80 3487
[17] Ye J, Kimble H J and Katori H 2008 Science 320 1734
[18] Furusawa A, Sφrensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[19] Huo W Y and Long G L 2008 Appl. Phys. Lett. 92 133102
[20] Xue F, Liu Y, Sun C P and Nori F 2007 Phys. Rev. B 76 064305
[21] Etaki S, Poot M, Mahboob I, Onomitsu K, Yamaguchi H and Van der zant H S J 2008 Nat. Phys. 4 785
[22] Jing J T, Liu C J, Zhou Z F, et al. 2012 Chin. Sci. Bull. 57 (16) 1925
[23] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[24] Lambropoulos P, Nikolopoulos G M, Nielsen T R and Bay S 2000 Rep. Prog. Phys. 63 455
[25] Piilo J, Maniscalco S, Härkönen K and Suominen K A 2008 Phys. Rev. Lett. 100 180402
[26] Dublin F, Rotter D, Mukherjee M, Russo C, Eschner J and Blatt R 2007 Phys. Rev. Lett. 98 183003
[27] Lai C W, Maletinsky P, Badolato A and Imamoglu A 2006 Phys. Rev. Lett. 96 167403
[28] Galland C, Hogele A, Tureci H E and Imamoglu A 2008 Phys. Rev. Lett. 101 067402
[29] Breuer H P, Burgarth D and Petruccione F 2004 Phys. Rev. B 70 045323
[30] Xiao X, Fang M F, Li Y L, Kang G D and Wu C 2010 Eur. Phys. J. D 57 447
[31] Xiao X, Fang M F and Hu Y M 2011 Phys. Scr. 84 045011
[32] Yin X L, Ma J, Wang X G and Nori F 2012 e-print arXiv: 1204.0093
[33] Ferraro E, Scala M, Migliore R and Napoli A 2009 Phys. Rev. A 80 042112
[34] Sinayskiy I, Ferraro E, Napoli A, Messina A and Petruccione F 2009 e-print arXiv: 0906.1796
[35] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[1] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[2] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[3] Optical wavelet-fractional squeezing combinatorial transform
Cui-Hong Lv(吕翠红), Ying Cai(蔡莹), Nan Jin(晋楠), and Nan Huang(黄楠). Chin. Phys. B, 2022, 31(2): 020303.
[4] Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators
Qin Wu(吴琴). Chin. Phys. B, 2021, 30(2): 020303.
[5] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[6] Steady and optimal entropy squeezing for three types of moving three-level atoms coupled with a single-mode coherent field
Wen-Jin Huang(黄文进) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010304.
[7] Effects of postselected von Neumann measurement on the properties of single-mode radiation fields
Yusuf Turek(玉素甫·吐拉克). Chin. Phys. B, 2020, 29(9): 090302.
[8] Phase-modulated quadrature squeezing in two coupled cavities containing a two-level system
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Xue-Fang Zhou(周雪芳), Mei-Hua Bi(毕美华), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2020, 29(5): 050308.
[9] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[10] Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers
Di Zhang(张迪), Yu-Qing Li(李玉清), Yun-Fei Wang(王云飞), Yong-Ming Fu(付永明), Peng Li(李鹏), Wen-Liang Liu(刘文良), Ji-Zhou Wu(武寄洲), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(2): 023203.
[11] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[12] Spin squeezing in Dicke-class of states with non-orthogonal spinors
K S Akhilesh, K S Mallesh, Sudha, Praveen G Hegde. Chin. Phys. B, 2019, 28(6): 060302.
[13] Entropy squeezing for three-level atom interacting with a single-mode field
Fei-Fan Liu(刘非凡), Mao-Fa Fang(方卯发), Xiong Xu(许雄). Chin. Phys. B, 2019, 28(6): 060304.
[14] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[15] Fractional squeezing-Hankel transform based on the induced entangled state representations
Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯). Chin. Phys. B, 2018, 27(9): 094206.
No Suggested Reading articles found!