Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 098901    DOI: 10.1088/1674-1056/21/9/098901
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

SPICE modeling of memristors with multilevel resistance states

Fang Xu-Dong (方旭东)a, Tang Yu-Hua (唐玉华)b, Wu Jun-Jie (吴俊杰)a
a National Laboratory for Parallel and Distributed Processing, School of Computer, National University of Defense Technology, Changsha 410073, China;
b Department of Computer Science and Technology, School of Computer, National University of Defense Technology, Changsha 410073, China
Abstract  With CMOS technologies approaching the scaling ceiling, novel memory technologies have thrived in recent years, among which the memristor is a rather promising candidate for future resistive memory (RRAM). Memristor's potential to store multiple bits of information as different resistance levels allows its application in multilevel cell (MCL) technology, which can significantly increase the memory capacity. However, most existing memristor models are built for binary or continuous memristance switching. In this paper, we propose the simulation program with integrated circuits emphasis (SPICE) modeling of charge-controlled and flux-controlled memristors with multilevel resistance states based on the memristance versus state map. In our model, the memristance switches abruptly between neighboring resistance states. The proposed model allows users to easily set the number of the resistance levels as parameters, and provides the predicability of resistance switching time if the input current/voltage waveform is given. The functionality of our models has been validated in HSPICE. The models can be used in multilevel RRAM modeling as well as in artificial neural network simulations.
Keywords:  memristor      multilevel cell      SPICE model  
Received:  30 December 2011      Revised:  08 March 2012      Accepted manuscript online: 
PACS:  89.20.Ff (Computer science and technology)  
  85.40.Bh (Computer-aided design of microcircuits; layout and modeling)  
  85.35.-p (Nanoelectronic devices)  
  84.32.-y (Passive circuit components)  
Fund: Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 60921062) and the National Natural Science Foundation of China (Grant No. 61003075).
Corresponding Authors:  Fang Xu-Dong     E-mail:  fangxudong850403@gmail.com

Cite this article: 

Fang Xu-Dong (方旭东), Tang Yu-Hua (唐玉华), Wu Jun-Jie (吴俊杰) SPICE modeling of memristors with multilevel resistance states 2012 Chin. Phys. B 21 098901

[1] Chung A, Deen J, Lee J S and Meyyappan M 2010 Nanotechnology 21 41
[2] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[3] Chua L O 1971 IEEE T. Circuit I 18 507
[4] Yang Y C, Pan F, Liu Q, Liu M and Zeng F 2009 Nano Lett. 9 1636
[5] Xing Z W 2011 Chin. Phys. B 20 097703
[6] Li Y T, Long S B, Lu H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S and Liu L 2011 Chin. Phys. B 20 017305
[7] Chua L O and Kang S M 1976 Proc. IEEE 64 209
[8] Bauer M, Alexis R, Atwood G, Baltar B, Fazio A, Frary K, Hensel M, Ishac M, Javanifard J, Landgraf M, Leak D, Loe K, Mills D, Ruby P, Rozman R, Sweha S, Talreja S and Wojciechowski K 2000 IEEE International Symposium on Multiple-Valued Logic, Feb 1-6, 1995 Washington D.C., USA, p. 367
[9] Greene K (2011-12-11) http://www.technologyreview.com/Infotech/20148
[10] Kim H, Sah M P, Yang C J and Chua L O 2010 International Workshop on Cellular Nanoscale Networks and their Applications, Feb 2-6, 2010, Berkeley, USA, p. 1
[11] Merkel C E, Nagpal N, Mandalapu S and Kudithipudi D 2011 International Joint Conference on Neural Networks, July 1-5, 2011, San Jose, USA, p. 3042
[12] Yang Y C, Chen C, Zeng F and Pan F 2010 J. Appl. Phys. 107 093701
[13] Wang S Y, Huang C W, Lee D Y, Tseng T Y and Chang T C 2010 J. Appl. Phys. 108 114110
[14] Chang Y F, Chang T C and Chang C Y 2011 J. Appl. Phys. 110 053703
[15] Wu M C, Lin Y W, Jang, W Y, Lin C H and Tseng T Y 2011 IEEE Electr. Device Lett. 32 1026
[16] Lu W, Kim K H, Gaba S, Wheeler D, Cruz-Albrecht J, Hussain T and Srinivasa N 2011 Nano Lett. 12 389
[17] Benderli S and Wey T A 2009 Electron. Lett. 45 377
[18] Biolek Z, Biolek D and Biolková V 2009 Radioengineering 18 210
[19] Rák A and Cserey G 2010 IEEE T. Comput. Aid. D 29 632
[20] Lehtonen E and Laiho M 2010 International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), Feb 3-5, 2010 Berkeley, USA, p. 1
[21] Batas D and Fiedler H 2011 IEEE T. Nanotechnol. 10 250
[22] Zhou J and Huang D 2012 Chin. Phys. B 21 048401
[23] Abdalla H and Pickett M D 2011 IEEE International Symposium on Circuits and Systems (ISCAS), May 15-18, 2011 Rio de Janeiro, Brazil, p. 1832
[24] Prodromakis T, Boon P P, Papavassiliou C and Toumazou C 2011 IEEE T. Electron. Dev. 58 3099
[25] Zhang X, Zhou Y Z, Bi Q, Yang X H and Zu Y X 2010 Acta Phys. Sin. 59 6673 (in Chinese)
[26] Yakopcic C, Taha T M, Subramanyam G, Pino R E and Rogers S 2011 IEEE Electr. Device Lett. 32 1436
[27] Biolková V, Kolka Z, Biolek Z and Biolek D 2010 European Conference of Circuits Technology and Devices (ECCTD), Nov 30-Dec 2, 2010, Tenerife, Spain, p. 261
[28] Shin S, Kim K and Kang S M 2010 IEEE T. Comput. Aid. D 29 590
[29] Rozenberg M J, Inoue I H and Sánchez M J 2004 Phys. Rev. Lett. 92 178302
[30] Lee J G, Kim D H, Lee J G, Kim D M and Min K S 2007 IEICE Electron. Expr. 4 600
[31] Chua L O 2008 Int. J. Bifurcat. Chaos 18 3183
[32] Chua L O 2011 Appl. Phys. A Mater. 102 765
[33] Snider G S 2007 Nanotechnology 18 365202
[34] Jo S H, Kim K H and Lu W 2009 Nano Lett. 9 496
[35] Kim K M, Jeong D S and Hwang C S 2011 Nanotechnology 22 254002
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[4] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[5] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[6] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[7] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[8] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[9] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[10] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[11] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[12] MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation
Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉). Chin. Phys. B, 2022, 31(5): 058503.
[13] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[14] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[15] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
No Suggested Reading articles found!