Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 094211    DOI: 10.1088/1674-1056/21/9/094211
REVIEW Prev   Next  

Recent developments in high power near-infrared super-continuum generation based on photonic crystal fiber

Song Rui (宋锐), Hou Jing (侯静), Chen Sheng-Ping (陈胜平), Yang Wei-Qiang (杨未强), Lu Qi-Sheng (陆启生)
College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  High power supercontinuum generation witnessed rapid developments in the past few years. The mechanism and the latest achievements in high power supercontinuum generation are reviewed both for the continuous wave pump regime and the pulsed pump regime. The challenges in scaling the average power of supercontinuum generation are analyzed. Some of our works on high power supercontinuum generation are summarized, and perspectives for the future development are discussed.
Keywords:  fiber laser      supercontinuum      photonic crystal fiber  
Received:  11 January 2012      Revised:  10 February 2012      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61077076, 10904173, and 61007037), the International Technology Cooperation Program of the Technology Department, China (Grant No. 2012DFG11470), the Excellent Youth Foundation of Hunan Province, China (Grant No. 12JJ1010), and the Fund of Innovation of NUDT, China (Grant No. B120701)
Corresponding Authors:  Hou Jing     E-mail:  houjing25@sina.com

Cite this article: 

Song Rui (宋锐), Hou Jing (侯静), Chen Sheng-Ping (陈胜平), Yang Wei-Qiang (杨未强), Lu Qi-Sheng (陆启生) Recent developments in high power near-infrared super-continuum generation based on photonic crystal fiber 2012 Chin. Phys. B 21 094211

[1] Alfano R R and Shapiro S L 1970 Phys. Rev. Lett. 24 584
[2] Alfano R R and Shapiro S L 1970 Phys. Rev. Lett. 24 592
[3] Knight J C, Birks T A, Russell P S J and Atkin D M 1996 Opt. Lett. 21 1547
[4] Jonathan C K 2003 Nature 424 847
[5] Russell P 2003 Science 299 358
[6] Alfano R R 2006 The Supercontinuum Laser Source (New York: Springer)
[7] Shi K, Li P, Yin S and Liu Z J 2004 Opt. Express 12 2096
[8] Hartl I, Li X D, Chudoba C, Ghanta R K, Ko T H, Fujimoto J G, Ranka J K and Windeler S 2001 Opt. Lett. 26 608
[9] Lindfors K, Kalkbrenner T, Stoller P and Sandoghdar V 2004 Phys. Rev. Lett. 93 037401
[10] Frosz M H, Bang O and Bjarklev A 2006 Opt. Express 14 9391
[11] Cumberland B A, Travers J C, Popov S V and Taylor J R 2008 Opt. Express 16 5954
[12] Cumberland B A, Travers J C, Popov S V and Taylor J R 2008 Opt. Lett. 33 2122
[13] Travers J C, Rulkov A B, Cumberland B A, Popov S V and Taylor J R 2008 Opt. Express 16 14435
[14] Stone J M and Knight J C 2008 Opt. Express 16 2670
[15] Chen K K, Alam S, Price J H V, Hayes J R, Lin D J, Malinowski A, Codemard C, Ghosh D, Pal M, Bhadra S K and Richardson D J 2010 Opt. Express 18 5428
[16] Hu X B, Zhang W, Yang Z, Wang Y S, Zhao W, Li X H, Wang H S, Li C and Shen D Y 2011 Opt. Lett. 36 2659
[17] Chen S P, Chen H W, Hou J and Liu Z J 2009 Opt. Express 17 24008
[18] Keller U, Weingarten K J and Kartner F X 1996 IEEE J. Sel. Top. Quantum Electron. 2 435
[19] Chen Z L, Xiong C L, Xiao L M, Wadsworth W and Birk T 2009 Opt. Lett. 34 2240
[20] Wang Y B, Hou J, Chen S P, Song R, Li Y, Yang W Q and Lu Q S 2011 Chin. Phys. B 20 074208
[21] Chen H W, Chen S P and Hou J 2011 Laser Physics 21191
[22] Chen S P, Wang J H, Chen H W, Chen Z L, Hou J, Xu X J, Chen J B and Liu Z J 2011 Laser Physics 21 519
[23] Chen S P, Wang J H, Chen H W, Chen Z L, Hou J, Xu X J, Chen J B and Liu Z J 2010 Chinese Journal of Lasers 37 3018
[24] Song R, Chen S P, Hou J and Lu Q S 2011 High Power Laser and Particle Beams 23 569 (in Chinese)
[25] Song R, Hou J, Chen S P, Yang W Q and Lu Q S 2012 Appl. Opt. 51 2497
[26] Song R, Hou J, Chen S P, Wang Y B and Lu Q S 2012 Acta Phys. Sin. 61 054217 (in Chinese)
[27] Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W and Barty C P J 2008 Opt. Express 16 13240
[1] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[2] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[3] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[4] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[5] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[6] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[7] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[8] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[9] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[10] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[11] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[12] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
[13] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[14] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[15] Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser
Xude Wang(汪徐德), Simin Yang(杨思敏), Mengqiu Sun(孙梦秋), Xu Geng(耿旭), Jieyu Pan (潘婕妤), Shuguang Miao(苗曙光), and Suwen Li(李素文). Chin. Phys. B, 2021, 30(6): 064212.
No Suggested Reading articles found!