Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030306    DOI: 10.1088/1674-1056/22/3/030306
GENERAL Prev   Next  

Squeezing entangled state of two particles with unequal masses

Yang Yang (杨阳)a, Fan Hong-Yi (范洪义)b
a Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
b Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Abstract  For two unequal-mass particles, we construct the entangled state representation and then derive the corresponding squeezing operator. This squeezing operator has a natural realization in the entangled state representation, which exhibits the intrinsic relation between squeezing and quantum entanglement. This squeezing operator involves both two-mode squeezing and the direct product of two single-mode squeezings. The maximum squeezing occurs when the two particles possess equal mass. When two particles' mass difference becomes large, the component of the two single-mode squeezings becomes dominant.
Keywords:  squeezing operator      integration within an ordered product (IWOP) technique      entangled state representation  
Received:  15 August 2012      Revised:  29 August 2012      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10975125).
Corresponding Authors:  Yang Yang     E-mail:  yangyang@mail.ustc.edu.cn

Cite this article: 

Yang Yang (杨阳), Fan Hong-Yi (范洪义) Squeezing entangled state of two particles with unequal masses 2013 Chin. Phys. B 22 030306

[1] Bennett C H and Sicincenzo D P 2000 Nature 404 247
[2] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1983 Phys. Rev. Lett. 70 1895
[3] Bennett C H and Wiesener S J 1992 Phys. Rev. Lett. 69 2881
[4] Ekert A K 1991 Phys. Rev. Lett. 67 661
[5] Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 49 1804
[6] Bell J S 1964 Physics 1 195
[7] Xu G F and Tong D M 2012 Chin. Phys. Lett. 29 070302
[8] Duan Y F, Yu L and Li G X 2012 Chin. Phys. B 21 090302
[9] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[10] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
[11] Fan H Y and Fan Y 1996 Phys. Rev. A 54 958
[12] Fan H Y and Ye X 1995 Phys. Rev. A 51 3343
[13] Fan H Y and Hu L Y 2008 Chin. Phys. B 17 1640
[14] Fan H Y and Hu L Y 2008 Chin. Phys. Lett. 25 513
[15] Fan H Y 2010 Chin. Phys. B 19 050303
[1] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[2] Fractional squeezing-Hankel transform based on the induced entangled state representations
Cui-Hong Lv(吕翠红), Su-Qing Zhang(张苏青), Wen Xu(许雯). Chin. Phys. B, 2018, 27(9): 094206.
[3] Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation
Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁), Hong-Yi Fan(范洪义), Cheng-Wei Xia(夏承魏). Chin. Phys. B, 2016, 25(4): 040302.
[4] A new optical field generated as an output of the displaced Fock state in an amplitude dissipative channel
Xu Xue-Fen(许雪芬), Fan Hong-Yi(范洪义). Chin. Phys. B, 2015, 24(1): 010301.
[5] New 3-mode bosonic operator realization of SU(2) Lie algebra:From the point of view of squeezing
Da Cheng (笪诚), Chen Qian-Fan (陈千帆), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(9): 090302.
[6] New approach to solving master equations of density operator for the Jaynes Cummings model with cavity damping
Seyed Mahmoud Ashrafi, Mohammad Reza Bazrafkan. Chin. Phys. B, 2014, 23(9): 090303.
[7] Evolution law of a negative binomial state in an amplitude dissipative channel
Chen Feng (陈锋), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030304.
[8] Detaching two single-mode squeezing operators from the two-mode squeezing operator
Fan Hong-Yi (范洪义), Da Cheng (笪诚). Chin. Phys. B, 2013, 22(9): 090303.
[9] Optical field’s quadrature excitation studied by new Hermite-polynomial operator identity
Fan Hong-Yi (范洪义), He Rui (何锐), Da Cheng (笪诚), Liang Zu-Feng (梁祖峰). Chin. Phys. B, 2013, 22(8): 080301.
[10] New operator identities regarding to two-variable Hermite polynomial by virtue of entangled state representation
Yuan Hong-Chun (袁洪春), Li Heng-Mei (李恒梅), Xu Xue-Fen (许雪芬). Chin. Phys. B, 2013, 22(6): 060301.
[11] New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Liang Bao-Long (梁宝龙). Chin. Phys. B, 2013, 22(3): 030307.
[12] Squeeze-swapping by Bell measurement studied in terms of the entangled state representation
Li Xue-Chao (李学超), Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义 ). Chin. Phys. B, 2012, 21(8): 080304.
[13] Photon-number distribution of two-mode squeezed thermal states by entangled state representation
Hu Li-Yun(胡利云), Wang Shuai(王帅), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2012, 21(6): 064207.
[14] A new bipartite entangled state describing the parametric down-conversion process and its applications in quantum optics
Meng Xiang-Guo (孟祥国), Wang Ji-Suo (王继锁), Zhang Xiao-Yan (张晓燕). Chin. Phys. B, 2012, 21(10): 100305.
[15] The Fresnel–Weyl complementary transformation
Xie Chuan-Mei (谢传梅), Fan Hong-Yi (范洪义). Chin. Phys. B, 2012, 21(10): 100302.
No Suggested Reading articles found!