Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 044207    DOI: 10.1088/1674-1056/21/4/044207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Geometric phases in qubit-oscillator system beyond conventional rotating-wave approximation

Wang Yue-Ming(王月明)a)b), Du Guan(杜冠)a), and Liang Jiu-Qing(梁九卿)a)
a. Department of Physics, Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China;
b. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China
Abstract  In this work we investigated the geometric phases of a qubit-oscillator system beyond the conventional rotating-wave approximation. We find that in the limiting of weak coupling the results coincide with that obtained under rotating-wave approximation while there exists an increasing difference with the increase of coupling constant. It was shown that the geometric phase is symmetric with respect to the sign of the detuning of the quantized field from the one-photon resonance under the conventional rotating-wave approximation while a red-blue detuning asymmetry occurs beyond the conventional rotating-wave approximation.
Keywords:  geometric phase      rotating-wave approximation      red-blue detuning asymmetry  
Received:  10 September 2011      Revised:  10 October 2011      Accepted manuscript online: 
PACS:  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11075099, 11047167, and 11105087), the Programme of State Key Laboratory of Quantum Optics and Quantum Optics Devices (Grant No. KF201002), the National Fundamental Fund of Personnel Training (Grant No. J1103210), and the Youth Science Foundation of Shanxi Province of China (Grant No. 2010021003-2).
Corresponding Authors:  Wang Yue-Ming,wang_ym@sxu.edu.cn     E-mail:  wang_ym@sxu.edu.cn

Cite this article: 

Wang Yue-Ming(王月明), Du Guan(杜冠), and Liang Jiu-Qing(梁九卿) Geometric phases in qubit-oscillator system beyond conventional rotating-wave approximation 2012 Chin. Phys. B 21 044207

[1] Berry M V 1984 Proc. R. Soc. London A 392 45
[2] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593
[3] Shapere A and Wilczek F 1989 Geometric Phases in Physics (Singapore: World Scientific)
[4] Mead C A 1992 Rev. Mod. Phys. 64 51
[5] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[6] Zhu S L and Wang Z D 2002 Phys. Rev. Lett. 89 097902
[7] Moler D, Madsen L and Molmer K 2007 Phys. Rev. A 75 062302
[8] Joshi A and Xiao M 2006 Phys. Lett. A 359 390
[9] Yin S and Tong D M 2009 Phys. Rev. A 79 044303
[10] Jones J A, Vedral V, Ekert A and Castagnoli G 2000 Nature 403 869
[11] Filipp S, Klepp J, Hasegawa Y, Plonka-Spehr C, Schmidt U, Geltenbort P and Rauch H 2009 Phys. Rev. Lett. 102 030404
[12] Fuentes-Guridi I, Carollo A, Bose S and Vedral V 2002 Phys. Rev. Lett. 89 220404
[13] Carollo A, Francca Santos M and Vedral V 2003 Phys. Rev. A 67 063804
[14] Liu Y, Wei L F, Jia W Z and Liang J Q 2010 Phys. Rev. A 82 045801
[15] Leek P J, Fink J M, Blais A, Bianchetti R, Göppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J and Wallraff A 2007 Science 318 1889
[16] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[17] Rempe G and Walther H 1987 Phys. Rev. Lett. 58 353
[18] Fink J M, Göppl M, Baur M, Bianchetti R, Leek P J, Blais A and Wallraff A 2008 Nature 454 315
[19] Shore B W and Knight P L 1993 J. Mod. Opt. 40 1195
[20] Bonci L, Roncaglia R, West B J and Grigolini P 1991 Phys. Rev. Lett. 67 2593
[21] Zheng H, Zhu S Y and Zubairy M S 2008 Phys. Rev. Lett. 101 200404
[22] Forn-D'hiaz P, Lisenfeld J, Marcos D, Garc'hia-Ripoll J J, Solano E, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 2370014
[23] Cao X F, You J Q, Zheng H and Nori F 2010 New J. Phys. 13 073002
[24] Yang Q, Yang M, Li D C and Cao Z L 2009 Chin. Phys. B 18 4662
[25] Liu W C, Wang F Q and Liang R S 2010 Chin. Phys. B 19 094204
[26] Irish E K 2007 Phys. Rev. Lett. 99 173601
[27] Martin I and Schwab K C 2005 Phys. Rev. B 72 195410
[28] Chen Q H, Zhang Y Y, Liu T and Wang K L 2008 Phys. Rev. A 78 051801
[29] Zhang Y Y, Chen Q H and Wang K L 2010 Phys. Rev. B 81 121105
[30] Guo W 2009 Phys. Rev. A 80 033828
[31] Casanova J, Romero G, Lizuain I, Garc'hi a-Ripoll J J and Solano E 2010 Phys. Rev. Lett. 105 263603
[32] Hausinger J and Grifoni M 2011 Phys. Rev. A 83 030301
[33] Gan C J and Zheng H 2010 Eur. Phys. J. D 59 473
[34] Werlang T, Dodonov A V, Duzzioni E I and Villas-B^oas C J 2008 Phys. Rev. A 78 053805
[35] Chen G, Li J Q and Liang J Q 2006 Phys. Rev. A 74 054101
[36] Carollo A, Fuentes-Guridi I, Santos M F and Vedral V 2004 Phys. Rev. Lett. 92 020402
[37] Larson J and Levin S 2009 Phys. Rev. Lett. 103 013602
[38] Reithmaier J P, Sek G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L and Forchel A 2004 Nature 432 197
[39] Imamoglu A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M and Small A 1999 Phys. Rev. Lett. 83 4204
[1] Geometric phase under the Unruh effect with intermediate statistics
Jun Feng(冯俊), Jing-Jun Zhang(张精俊), and Qianyi Zhang(张倩怡). Chin. Phys. B, 2022, 31(5): 050312.
[2] Geometry of time-dependent $\mathcal{PT}$-symmetric quantum mechanics
Da-Jian Zhang(张大剑), Qing-hai Wang(王清海), and Jiangbin Gong(龚江滨). Chin. Phys. B, 2021, 30(10): 100307.
[3] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[4] Controllable photon echo phase induced by modulated pulses and chirped beat detection
Xian-Yang Zhang(张显扬), Shuang-Gen Zhang(张双根), Hua-Di Zhang(张化迪), Xiu-Rong Ma(马秀荣). Chin. Phys. B, 2019, 28(2): 024207.
[5] Observation of geometric phase in a dispersively coupled resonator-qutrit system
Libo Zhang(张礼博), Chao Song(宋超), H Wang(王浩华), Shi-Biao Zheng(郑仕标). Chin. Phys. B, 2018, 27(7): 070303.
[6] A method for generating double-ring-shaped vector beams
Huan Chen(陈欢), Xiao-Hui Ling(凌晓辉), Zhi-Hong Chen(陈知红), Qian-Guang Li(李钱光), Hao Lv(吕昊), Hua-Qing Yu(余华清), Xu-Nong Yi(易煦农). Chin. Phys. B, 2016, 25(7): 074201.
[7] Induced modification of geometric phase of a qubit coupled to an XY spin chain by the Dzyaloshinsky–Moriya interaction
Zhang Ai-Ping (张爱萍), Li Fu-Li (李福利). Chin. Phys. B, 2013, 22(3): 030308.
[8] Fidelity susceptibility and geometric phase in critical phenomenon
Tian Li-Jun(田立君), Zhu Chang-Qing(朱长青), Zhang Hong-Biao(张宏标), and Qin Li-Guo(秦立国) . Chin. Phys. B, 2011, 20(4): 040302.
[9] Concurrence evolution of two qubits coupled with one-mode cavity separately
Liu Wei-Ci(刘伟慈), Wang Fa-Qiang(王发强), and Liang Rui-Sheng(梁瑞生). Chin. Phys. B, 2010, 19(9): 094204.
[10] Geometric phases and quantum phase transitions in inhomogeneous XY spin-chains: Effect of the Dzyaloshinski-Moriya interaction
Wang Lin-Cheng(王林成) Yan Jun-Yan(闫俊彦), and Yi Xue-Xi(衣学喜). Chin. Phys. B, 2010, 19(4): 040512.
[11] Unconventional geometric phase gate and multiqubit entanglement for hot ions with a frequency-modulated field
Zhong Wen-Xue(钟文学), Cheng Guang-Ling(程广玲), and Chen Ai-Xi(陈爱喜). Chin. Phys. B, 2010, 19(11): 110310.
[12] Critical entanglement and geometric phase of a two-qubitmodel with Dzyaloshinski--Moriya anisotropic interaction
Li Zhi-Jian(李志坚), Cheng Lu(程璐), and Wen Jiao-Jin(温姣进) . Chin. Phys. B, 2010, 19(1): 010305.
[13] Operating a geometric quantum gate by external controllable parameters
Ji Ying-Hua(嵇英华), Cai Shi-Hua(蔡十华), Le Jian-Xin(乐建新), and Wang Zi-Sheng(王资生). Chin. Phys. B, 2010, 19(1): 010311.
[14] Experimental verification of Foreman dislocation model
Zhao Chun-Wang(赵春旺), Xing Yong-Ming(邢永明), and Bai Pu-Cun(白朴存). Chin. Phys. B, 2009, 18(6): 2464-2468.
[15] Entanglement evolution of a two-qubit system with decay beyond the rotating-wave approximation
Yang Qing(杨青), Yang Ming(杨名), Li Da-Chuang(李大创), and Cao Zhuo-Liang(曹卓良). Chin. Phys. B, 2009, 18(11): 4662-4666.
No Suggested Reading articles found!