ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Geometric phases in qubit-oscillator system beyond conventional rotating-wave approximation |
Wang Yue-Ming(王月明)a)b)†, Du Guan(杜冠)a), and Liang Jiu-Qing(梁九卿)a) |
a. Department of Physics, Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China;
b. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China |
|
|
Abstract In this work we investigated the geometric phases of a qubit-oscillator system beyond the conventional rotating-wave approximation. We find that in the limiting of weak coupling the results coincide with that obtained under rotating-wave approximation while there exists an increasing difference with the increase of coupling constant. It was shown that the geometric phase is symmetric with respect to the sign of the detuning of the quantized field from the one-photon resonance under the conventional rotating-wave approximation while a red-blue detuning asymmetry occurs beyond the conventional rotating-wave approximation.
|
Received: 10 September 2011
Revised: 10 October 2011
Accepted manuscript online:
|
PACS:
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11075099, 11047167, and 11105087), the Programme of State Key Laboratory of Quantum Optics and Quantum Optics Devices (Grant No. KF201002), the National Fundamental Fund of Personnel Training (Grant No. J1103210), and the Youth Science Foundation of Shanxi Province of China (Grant No. 2010021003-2). |
Corresponding Authors:
Wang Yue-Ming,wang_ym@sxu.edu.cn
E-mail: wang_ym@sxu.edu.cn
|
Cite this article:
Wang Yue-Ming(王月明), Du Guan(杜冠), and Liang Jiu-Qing(梁九卿) Geometric phases in qubit-oscillator system beyond conventional rotating-wave approximation 2012 Chin. Phys. B 21 044207
|
[1] |
Berry M V 1984 Proc. R. Soc. London A 392 45
|
[2] |
Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593
|
[3] |
Shapere A and Wilczek F 1989 Geometric Phases in Physics (Singapore: World Scientific)
|
[4] |
Mead C A 1992 Rev. Mod. Phys. 64 51
|
[5] |
Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
|
[6] |
Zhu S L and Wang Z D 2002 Phys. Rev. Lett. 89 097902
|
[7] |
Moler D, Madsen L and Molmer K 2007 Phys. Rev. A 75 062302
|
[8] |
Joshi A and Xiao M 2006 Phys. Lett. A 359 390
|
[9] |
Yin S and Tong D M 2009 Phys. Rev. A 79 044303
|
[10] |
Jones J A, Vedral V, Ekert A and Castagnoli G 2000 Nature 403 869
|
[11] |
Filipp S, Klepp J, Hasegawa Y, Plonka-Spehr C, Schmidt U, Geltenbort P and Rauch H 2009 Phys. Rev. Lett. 102 030404
|
[12] |
Fuentes-Guridi I, Carollo A, Bose S and Vedral V 2002 Phys. Rev. Lett. 89 220404
|
[13] |
Carollo A, Francca Santos M and Vedral V 2003 Phys. Rev. A 67 063804
|
[14] |
Liu Y, Wei L F, Jia W Z and Liang J Q 2010 Phys. Rev. A 82 045801
|
[15] |
Leek P J, Fink J M, Blais A, Bianchetti R, Göppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J and Wallraff A 2007 Science 318 1889
|
[16] |
Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
|
[17] |
Rempe G and Walther H 1987 Phys. Rev. Lett. 58 353
|
[18] |
Fink J M, Göppl M, Baur M, Bianchetti R, Leek P J, Blais A and Wallraff A 2008 Nature 454 315
|
[19] |
Shore B W and Knight P L 1993 J. Mod. Opt. 40 1195
|
[20] |
Bonci L, Roncaglia R, West B J and Grigolini P 1991 Phys. Rev. Lett. 67 2593
|
[21] |
Zheng H, Zhu S Y and Zubairy M S 2008 Phys. Rev. Lett. 101 200404
|
[22] |
Forn-D'hiaz P, Lisenfeld J, Marcos D, Garc'hia-Ripoll J J, Solano E, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 2370014
|
[23] |
Cao X F, You J Q, Zheng H and Nori F 2010 New J. Phys. 13 073002
|
[24] |
Yang Q, Yang M, Li D C and Cao Z L 2009 Chin. Phys. B 18 4662
|
[25] |
Liu W C, Wang F Q and Liang R S 2010 Chin. Phys. B 19 094204
|
[26] |
Irish E K 2007 Phys. Rev. Lett. 99 173601
|
[27] |
Martin I and Schwab K C 2005 Phys. Rev. B 72 195410
|
[28] |
Chen Q H, Zhang Y Y, Liu T and Wang K L 2008 Phys. Rev. A 78 051801
|
[29] |
Zhang Y Y, Chen Q H and Wang K L 2010 Phys. Rev. B 81 121105
|
[30] |
Guo W 2009 Phys. Rev. A 80 033828
|
[31] |
Casanova J, Romero G, Lizuain I, Garc'hi a-Ripoll J J and Solano E 2010 Phys. Rev. Lett. 105 263603
|
[32] |
Hausinger J and Grifoni M 2011 Phys. Rev. A 83 030301
|
[33] |
Gan C J and Zheng H 2010 Eur. Phys. J. D 59 473
|
[34] |
Werlang T, Dodonov A V, Duzzioni E I and Villas-B^oas C J 2008 Phys. Rev. A 78 053805
|
[35] |
Chen G, Li J Q and Liang J Q 2006 Phys. Rev. A 74 054101
|
[36] |
Carollo A, Fuentes-Guridi I, Santos M F and Vedral V 2004 Phys. Rev. Lett. 92 020402
|
[37] |
Larson J and Levin S 2009 Phys. Rev. Lett. 103 013602
|
[38] |
Reithmaier J P, Sek G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L and Forchel A 2004 Nature 432 197
|
[39] |
Imamoglu A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M and Small A 1999 Phys. Rev. Lett. 83 4204
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|