Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 080402    DOI: 10.1088/1674-1056/21/8/080402
GENERAL Prev   Next  

Absorption of massless scalar wave from Schwarzschild black hole surrounded by quintessence

Liao Hao (廖浩), Chen Ju-Hua (陈菊华), Wang Yong-Jiu (王永久 )
College of Physics and Information Science, Hunan Normal University, Changsha 410081, China
Abstract  By using the partial wave method, we investigate the absorption of massless scalar wave from Schwarzschild black hole surrounded by the quintessence. We obtained the expression of absorption cross section
080402
Then we numerically carry out the absorption cross section and we find that the larger angular momentum quantum number l is, the smaller the corresponding maximum value of partial absorption cross section is, and that the total absorption cross section tends to geometric-optical limit σabshf≈ π bc2. We also find that higher value of ωq (state parameter of the quintessence) corresponds the higher value of absorption cross section σabs.
Keywords:  quintessence      absorption cross section      massless scalar wave  
Received:  06 February 2012      Revised:  14 March 2012      Accepted manuscript online: 
PACS:  04.70.-s (Physics of black holes)  
  04.40.-b (Self-gravitating systems; continuous media and classical fields in curved spacetime)  
  04.50.Gh (Higher-dimensional black holes, black strings, and related objects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10873004), the State Key Development Program for Basic Research of China (Grant No. 2010CB832803), and the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0964).
Corresponding Authors:  Chen Ju-Hua     E-mail:  jhchen@hunnu.edu.cn

Cite this article: 

Liao Hao (廖浩), Chen Ju-Hua (陈菊华), Wang Yong-Jiu (王永久 ) Absorption of massless scalar wave from Schwarzschild black hole surrounded by quintessence 2012 Chin. Phys. B 21 080402

[1] Futterman J A H, Handler F A and Matzner R A 1988 Scattering from Black Holes (Cambridge: Cambridge University Press) p. 254
[2] Sánchez N 1977 Phys. Rev. D 16 937
[3] Sánchez N 1978 Phys. Rev. D 18 1030
[4] Unruh W G 1976 Phys. Rev. D 14 3251
[5] Doran C, Lasenby A, Dolan Sam R and Hinder I 2005 Phys. Rev. D 71 124020
[6] Crispino Luís C B, Oliveira Ednilton S, Higuchi A and Matsas G E A 2007 Phys. Rev. D 75 104012
[7] Oliveira Ednilton S, Dolan Sam R and Crispino Luís C B 2010 Phys. Rev. D 81 124013
[8] Crispino Luís C B, Oliveira Ednilton S and Matras George E A 2007 Phys. Rev. D 76 107502
[9] Crispino Luís C B and Olivera E S 2008 Phys. Rev. D 78 024011
[10] Chen J H, Liao H and Wang Y J 2011 Phys. Lett. B 705 124
[11] Das S R, Gibbons G and Mathur S D 1997 Phys. Rev. Lett. 78 417
[12] Jung E, Kim S H and Park D K 2004 Phys. Lett. B 602 105
[13] Crispino Luís C B, Higuchi A and Matsas G E A 2001 Phys. Rev. D 63 124008
[14] Gubser S S 1997 Phys. Rev. D 56 7854
[15] Décanini Y, Esposito-Farése G and Folacci A 2011 Phys. Rev. D 83 044032
[16] Décanini Y, Folacci A and Raffaelli B 2010 Phys. Rev. D 81 104039
[17] Padmanabham T 2003 Phys. Rep. 380 23
[18] Alcaniz J S 2004 Phys. Rev. D 69 083501
[19] Caldwell R R and Rahul D 2002 Phys. Lett. B 545 23
[20] Chimento L P and Lazkoz R 2003 Phys. Rev. Lett. 91 211301
[21] Caldwell R R, Rahul D and Paul J S 1998 Phys. Rev. Lett. 80 1582
[22] Sahniv L and Wang L M 2000 Phys. Rev. D 62 103517
[23] Capozziello S, Cardone V F, Piedipalumbo E and Rubano C 2006 Class. Quantum Grav. 23 1205
[24] Vikman A 2005 Phys. Rev. D 71 023515
[25] Rogerio R and Joshua A F 2006 arXiv: astroph/ 06112421V1
[26] Chiba T, Takahiro O and Masahide Y 2000 Phys. Rev. D 62 023511
[27] Scherrer R J 2004 Phys. Rev. Lett. 93 011301
[28] Wei H 2005 Class. Quantum Grav. 22 3189
[29] Zhao G B, Xia T Q, Li M Z, Feng B and Zhang X M 2005 Phys. Rev. D 72 123515
[30] Feng B, Xia T Q and Li M Z 2006 Phys. Lett. B 20 2075
[31] Zhang Y, Gui Y X and Yu F 2009 Chin. Phys. Lett. 26 030401
[32] Zhang Y and Gui Y X 2006 Class. Quantum Grav. 23 6141
[33] Chen J H and Wang Y J 2010 Int. J. Mod. Phys. A 25 1439
[34] Tian G H, Wang S K and Zhao Z 2006 Chin. Phys. 15 1430
[35] Chen J H and Wang Y J 2008 Chin. Phys. B 17 1184
[36] Chen J H and Wang Y J 2008 Commun. Theor. Phys. 50 101
[37] Chen J H and Wang Y J 2010 Chin. Phys. B 19 010401
[38] Chen J H and Wang Y J 2003 Class. Quantum Grav. 20 3897
[39] Abrammowitz M and Stegun I A 1965 Handbook of Math- ematical Functions (New York: Dover Publications) p. 53
[40] Higuchi A 2001 Class. Quantum Grav. 18 L130
[41] Mashhoon B 1973 Phys. Rev. D 7 2807
[42] Fabbri R 1975 Phys. Rev. D 12 933
[43] Misner C W, Thorne K S and Wheeler J A 1973 Gravita- tion (San Francisco: Freeman W H and Company) p. 563
[44] Newton R G 1982 Scattering Theory of Waves and Par- ticles (New York: Springer-Verlag) p. 531
[45] Iyer S and Will C M 1987 Phys. Rev. D 35 3621
[46] Iyer S 1987 Phys. Rev. D 35 3632
[47] Andersson N 1995 Phys. Rev. D 52 1808
[48] Doran C, Lasenby A, Dolan Sam R and Hinder I 2005 Phys. Rev. D 71 124020
[49] Crispion Luís C B, Dolan Sam R and Oliveira Ednilton S 2009 Phys. Rev. D 79 064022
[1] Absorption cross section of black holes with a global monopole
Huang Hai (黄海), Wang Yong-Jiu (王永久), Chen Ju-Hua (陈菊华). Chin. Phys. B, 2013, 22(7): 070401.
[2] Thermodynamic properties of Reissner–Nordström–de Sitter quintessence black holes
Wei Yi-Huan (魏益焕), Ren Jun (任军). Chin. Phys. B, 2013, 22(3): 030402.
[3] Some characteristics of three exact solutions of Einstein equations minimally coupled to a Quintessence field
Zhou Xiao-Hua(周晓华). Chin. Phys. B, 2009, 18(8): 3115-3121.
[4] Quintessence models with an oscillating equation of state and their potentials
Zhao Wen(赵文). Chin. Phys. B, 2007, 16(9): 2830-2836.
[5] Gravitational frequency-shift and deflection of light by quintessence
Chen Ju-Hua(陈菊华) and Wang Yong-Jiu(王永久). Chin. Phys. B, 2007, 16(11): 3212-3215.
No Suggested Reading articles found!