Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 023302    DOI: 10.1088/1674-1056/21/2/023302
GENERAL Prev   Next  

Autler–Townes splitting in photoelectron spectra of K2 molecule

Yao Hong-Bin(姚洪斌) and Zheng Yu-Jun(郑雨军)
School of Physics, Shandong University, Jinan 250100, China
Abstract  We investigate Autler-Townes splitting in the photoelectron spectra of K2 molecule driven by pump-probe pulses via employing the time-dependent wave packet approach. It is found that the magnitude of Aulter-Townes splitting varies with the wavelength of the intense laser pulse. In particular, the phenomenon of Aulter-Townes splitting vanishes for the far-off resonance of the pump pulse. Also, the split peaks of Autler-Townes in the case of resonant pump pulse give us an approach to directly obtaining the transition dipole moment of a molecule.
Keywords:  Autler-Townes splitting      photoelectron spectra      K2 molecule      wave packet  
Received:  11 March 2011      Revised:  25 April 2011      Accepted manuscript online: 
PACS:  33.60.+q (Photoelectron spectra )  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  33.20.Xx (Spectra induced by strong-field or attosecond laser irradiation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91021009 and 10874102) and the Research Fund for the Doctoral Program of Higher Education, China (Grant No. 200804220004).
Corresponding Authors:  Zheng Yu-Jun,yzheng@sdu.edu.cn     E-mail:  yzheng@sdu.edu.cn

Cite this article: 

Yao Hong-Bin(姚洪斌) and Zheng Yu-Jun(郑雨军) Autler–Townes splitting in photoelectron spectra of K2 molecule 2012 Chin. Phys. B 21 023302

[1] Zewail A H 1988 Science 242 1645
[2] Garraway B M and Suominen K A 1995 Rep. Prog. Phys. 58 365
[3] Kulander K C, Mies F H and Schafer K J 1996 Phys. Rev. A 53 2562
[4] Constant E, Stapelfeldt H and Corkum P B 1996 Phys. Rev. Lett. 76 4140
[5] Yao H and Zheng Y 2011 Phys. Chem. Chem. Phys. 13 8900
[6] Allendorf S W and Szöke A 1991 Phys. Rev. A 44 518
[7] Aubanel E E and Bandrauk A 1993 J. Phys. Chem. 97 12620
[8] Frasinski L J, Posthumus J H, Plumridge J, Codling K, Taday P F and Langley A J 1999 Phys. Rev. Lett. 83 3625
[9] Giusti-Suzor A, He X, Atabek O and Mies F H 1990 Phys. Rev. Lett. 64 515
[10] Zavriyev A, Bucksbaum P H, Squier J and Saline F 1993 Phys. Rev. Lett. 70 1077
[11] Magnier S, Persico M and Rahman N 1999 Phys. Rev. Lett. 83 2159
[12] Granucci G, Magnier S and Persico M 2002 J. Chem. Phys. 116 1022
[13] Wunderlich C, Kobler E, Figger H and Hänsch T W 1997 Phys. Rev. Lett. 78 2333
[14] Solá I R, Chang B Y, Santamaría J, Malinovsky V S and Krause J L 2000 Phys. Rev. Lett. 85 4241
[15] Rickes T, Yatsenko L P, Steuerwald S, Halfmann T, Shore B W, Vitanov N V and Bergmanne K 2000 J. Chem. Phys. 113 534
[16] Underwood J G, Spanner M, Ivanov M Y, Mottershead J, Sussman B J and Stolow A 2003 Phys. Rev. Lett. 90 223001
[17] Autler S H and Townes C H 1955 Phys. Rev. 100 703
[18] Wu F, Grove R E and Ezekiel S 1975 Phys. Rev. Lett. 35 1426
[19] Schabert A, Keil R and Toschek P E 1975 Appl. Phys. 6 181
[20] Wollenhaupt M, Assion A, Bazhan O, Horn C, Liese D, Sarpe-Tudoran C, Winter M and Baumert T 2003 Phys. Rev. A 68 015401
[21] Wollenhaupt M, Liese D, Präkelt A, Sarpe-Tudoran C and Baumert T 2006 Chem. Phys. Lett. 419 184
[22] Astafiev O, Zagoskin A M, Abdumalikov A A, Pashkin Y A, Yamamoto T, Inomata K, Nakamura Y and Tsai J S 2010 Science 327 840
[23] Abdumalikov A A, Astafiev O, Zagoskin A M, Pashkin Y A, Nakamura Y and Tsai J S 2010 Phys. Rev. Lett. 104 193601
[24] Liang Q, Yang B, Yang J, Zhang T and Wang J 2010 Chin. Phys. B 19 113207
[25] Wrigge G, Gerhardt I, Hwang J, Zumofen G and Sandoghdar V 2008 Nat. Phys. 4 60
[26] Gerhardt I, Wrigge G, Bushev P, Zumofen G, Agio M, Pfab R and Sandoghdar V 2007 Phys. Rev. Lett. 98 033601
[27] Xu X, Sun B, Berman P R, Steel D G, Bracker A S, Gammon D and Sham L J 2007 Science 317 929
[28] Muller A, Flagg E B, Bianucci P, Wang X, Deppe D G, Ma W, Zhang J, Salamo G J, Xiao M and Shih C K 2007 Phys. Rev. Lett. 99 187402
[29] Vamivakas A N, Zhao Y, Lu C and Atatüre M 2009 Nat. Phys. 5 198
[30] Peng Y and Zheng Y 2009 Phys. Rev. A 80 043831
[31] Xie Y, Duan S, Chu W and Yang N 2010 Chin. Phys. B 19 117302
[32] Qi J, Lazarov G, Wang X, Li L, Narducci L M, Lyyra A M and Spano F C 1999 Phys. Rev. Lett. 83 288
[33] Garcia-Fernandez R, Ekers A, Klavins J, Yatsenko L P, Bezuglov N N, Shore B W and Bergmann K 2005 Phys. Rev. A 71 023401
[34] Salihoglu O, Qi P, Ahmed E H, Kotochigova S, Magnier S and Lyyra A M 2008 J. Chem. Phys. 129 174301
[35] Meier C and Engel V 1994 Phys. Rev. Lett. 73 3207
[36] Sun Z and Lou N 2003 Phys. Rev. Lett. 91 023002
[37] Schwoerer H, Pausch R, Heid M, Engel V and Kiefer W 1997 J. Chem. Phys. 107 9749
[38] Charron E and Suzor-Weiner A 1998 J. Chem. Phys. 108 3922
[39] Miao X, Wang L and Song H 2007 Phys. Rev. A 75 042512
[40] Magnier S, Aubert-Frécon M and Allouche A R 2004 J. Chem. Phys. 121 1771
[41] Jraij A, Allouche A R, Magnier S and Aubert-Frécon M 2009 J. Chem. Phys. 130 244307
[42] Jraij A, Allouche A R, Magnier S and Aubert-Frécon M 2008 Can. J. Phys. 86 1409
[43] Jong G, Li L, Whang T J, Stwalley W C, Coxon J A, Li M and Lyyra A M 1992 J. Mol. Spectrosc. 155 115
[44] Kowalczyck P, Kasahara S, Kabir M H and Katô H 2003 J. Mol. Spectrosc. 220 162
[45] Magnier S and Millié P 1996 Phys. Rev. A 54 204
[46] Meng Q, Yang G, Sun H, Han K and Lou N 2003 Phys. Rev. A 67 063202
[47] Kosloff D and Kosloff R 1983 J. Comp. Phys. 52 35
[48] Kosloff R 1988 J. Phys. Chem. 92 2087
[49] Feit M D, Fleck J A and Steiger A 1982 J. Comp. Phys. 47 412
[50] Xie T, Zhao Y, Zhao M and Han K 2003 Phys. Chem. Chem. Phys. 5 2034
[51] Hu J, Han K and He G 2005 Phys. Rev. Lett. 95 123001
[52] Chu T, Zhang Y and Han K 2006 Int. Rev. Phys. Chem. 25 201
[53] Paloviita A and Suominen K A 1997 Phys. Rev. A 55 3007
[54] Hill W T and Lee C H 2007 Light-Matter Interaction (New York: Wiley)
[55] Quesada M A, Lau A M F, Parker D H and Chandler D W 1987 Phys. Rev. A 36 4107
[56] Xu S, Sha G, Jiang B, Sun W, Chen X and Zhang C 1994 J. Chem. Phys. 100 6122
[1] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[2] Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations
Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超). Chin. Phys. B, 2021, 30(8): 083301.
[3] Exact quantum dynamics study of the H(2S)+SiH+(X1Σ+) reaction on a new potential energy surface of SiH2+(X2A1)
Wen-Li Zhao(赵文丽), Rui-Shan Tan(谭瑞山), Xue-Cheng Cao(曹学成), Feng Gao(高峰), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(12): 123403.
[4] Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics
Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2020, 29(6): 063101.
[5] Non-adiabatic quantum dynamical studies of Na(3p)+HD(ν=1, j=0)→NaH/NaD+D/H reaction
Yue-Pei Wen(温月佩), Bayaer Buren(布仁巴雅尔), Mao-Du Chen(陈茂笃). Chin. Phys. B, 2019, 28(6): 063401.
[6] Isotope effect and Coriolis coupling effect forthe Li + H(D)Cl→LiCl + H(D) reaction
Hongsheng Zhai(翟红生), Guanglei Liang(梁广雷), Junxia Ding(丁俊霞), Yufang Liu(刘玉芳). Chin. Phys. B, 2019, 28(5): 053401.
[7] Reaction mechanism of D+ND→N+D2 and its state-to-state quantum dynamics
Ting Xu(许婷), Juan Zhao(赵娟), Xian-Long Wang(王宪龙), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2019, 28(2): 023102.
[8] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[9] Cavity-induced ATS effect on a superconducting Xmon qubit
Xueyi Guo(郭学仪), Hui Deng(邓辉), Jianghao Ding(丁江浩), Hekang Li(李贺康), Pengtao Song(宋鹏涛), Zhan Wang(王战), Luhong Su(苏鹭红), Yanjun Liu(刘彦军), Zhongcheng Xiang(相忠诚), Jie Li(李洁), Yirong Jin(金贻荣), Yuxi Liu(刘玉玺), Dongning Zheng(郑东宁). Chin. Phys. B, 2018, 27(8): 084202.
[10] Delay time dependence of wave packet motion and population transfer of four-level K2 molecule in pump-pump-probe pulses
Zhiqiang Chang(常志强), Changming Li(李昌明), Wei Guo(郭玮), Hongbin Yao(姚洪斌). Chin. Phys. B, 2018, 27(5): 053301.
[11] Novel potential energy surface-based quantum dynamics of ion-molecule reaction O++D2 →OD++D
Xian-Long Wang(王宪龙), Feng Gao(高峰), Shou-Bao Gao(高守宝), Lu-Lu Zhang(张路路), Yu-Zhi Song(宋玉志), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2018, 27(4): 043104.
[12] State-to-state dynamics of F(2P)+HO(2Π) →O(3P)+HF(1+) reaction on 13A" potential energy surface
Juan Zhao(赵娟), Hui Wu(吴慧), Hai-Bo Sun(孙海波), Li-Fei Wang(王立飞). Chin. Phys. B, 2018, 27(2): 023102.
[13] Physical interpretation of Planck's constant based on the Maxwell theory
Donald C Chang(张东才). Chin. Phys. B, 2017, 26(4): 040301.
[14] The effect of field modulation on the vibrational population of the photoassociated NaK and its dynamics
Yu Wang(王玉), Da-Guang Yue(岳大光), Xu-Cong Zhou(周旭聪), Ya-Hui Guo(郭雅慧), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2017, 26(4): 043202.
[15] Autler-Townes spectroscopy of high-lying state by phase conjugate six-wave mixing
Jin-Hai Bai(白金海), Jian-Jun Li(李建军), Ling-An Wu(吴令安), Pan-Ming Fu(傅盘铭), Ru-Quan Wang(王如泉), Zhan-Chun Zuo(左战春). Chin. Phys. B, 2017, 26(4): 044204.
No Suggested Reading articles found!