Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 090501    DOI: 10.1088/1674-1056/20/9/090501
GENERAL Prev   Next  

Yang–Yang thermodynamics of one-dimensional Bose gases with anisotropic transversal confinement

Hao Ya-Jiang (郝亚江)a) and Yin Xiang-Guo(尹相国)b)
a Department of Physics, University of Science and Technology Beijing, Beijing 100083, China; b Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  By combining the thermodynamic Bethe ansatz and local density approximation, we investigate the Yang—Yang thermodynamics of interacting one-dimensional Bose gases with anisotropic transversal confinement. It is shown that with the increase of anisotropic parameter at low temperature, the Bose atoms are distributed over a wider region, while at high temperature the density distribution is not affected obviously. Both the temperature and transversal confinement can strengthen the local pressure of the Bose gases.
Keywords:  Bose gas      thermodynamics      anisotropic transversal confinement  
Received:  24 February 2011      Revised:  25 March 2011      Accepted manuscript online: 
PACS:  05.30.Jp (Boson systems)  
  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  67.85.-d (Ultracold gases, trapped gases)  

Cite this article: 

Hao Ya-Jiang (郝亚江) and Yin Xiang-Guo(尹相国) Yang–Yang thermodynamics of one-dimensional Bose gases with anisotropic transversal confinement 2011 Chin. Phys. B 20 090501

[1] Stöferle T, Moritz H, Schori C, Köhl M and Esslinger T 2004 Phys. Rev. Lett. 92 130403
[2] Paredes B, Widera A, Murg V, Mandel Q, Fölling S, Cirac I, Shlyapnikov G V, Hänsch T W and Bloch I 2004 Nature 429 277
[3] Kinoshita T, Wenger T and Weiss D S 2004 Science 305 1125
[4] Cheng F, Ke M, Li X L, Tang J Y and Wang Y Z 2009 Chin. Phys. B 18 4259
[5] Haller E, Mark M J, Hart R, Danzl J G, Röllner L, Melezhik V, Schmelcher P and Nägerl H 2010 Phys. Rev. Lett. 104 153203
[6] Olshanii M 1998 Phys. Rev. Lett. 81 938
[7] Petrov D S, Shlyapnikov G V and Walraven J T M 2000 Phys. Rev. Lett. 85 3745
[8] Dunjko V, Lorent V and Olshanii M 2001 Phys. Rev. Lett. 86 5413
[9] Hao Y, Zhang Y, Liang J Q and Chen S 2006 Phys. Rev. A 73 063617
[10] Hao Y, Zhang Y and Chen S 2007 Phys. Rev. A 76 063601
[11] Han J R, Liu X F, Wang Y J, Wang Y Z, Xu G Y and Yan L 2008 Chin. Phys. B 17 4158
[12] Girardeau M D 1960 J. Math. Phys. 1 516
[13] Girardeau M D 1965 Phys. Rev. 139 B500
[14] Tonks L 1936 Phys. Rev. 50 955
[15] Winkler K, Thalhammer G, Lang F, Grimm R, Denschlag J H, Daley A J, Kantian A, Büchler H P and Zoller P 2006 Nature 441 853
[16] Astrakharchik G E, Boronat J, Casulleras J and Giorgini S 2005 Phys. Rev. Lett. 95 190407
[17] Batchelor M T, Bortz M, Guan X W and Oelkers N 2005 J. Stat. Mech.: Theory Exp. L10001
[18] Chen S, Guan L, Yin X, Hao Y and Guan X W 2010 Phys. Rev. A 81 031609(R)
[19] Chen S, Guan X W, Yin X, Guan L and Batchelor M T 2010 Phys. Rev. A 81 031608(R)
[20] Guan L and Chen S 2010 Phys. Rev. Lett. 105 175301
[21] Wang L, Hao Y and Chen S 2010 Phys. Rev. A 81 063637
[22] Zhou Q, Lu J F and Yin J P 2010 Chin. Phys. B 19 093202
[23] Wang Z X, Ni Z G, Cong F Z, Liu X S and Chen L 2010 Chin. Phys. B 19 113205
[24] Fuchs J N, Gangardt D M, Keilmann T and Shlyapnikov G V 2005 Phys. Rev. Lett. 95 150402
[25] Guan L, Chen S, Wang Y and Ma Z Q 2009 Phys. Rev. Lett. 102 160402
[26] Batchelor M T, Bortz M, Guan X W and Oelkers N 2006 J. Stat. Mech. P03016
[27] Cazalilla M A and Ho A F 2003 Phys. Rev. Lett. 91 150403
[28] Deuretzbacher F, Bongs K, Sengstock K and Pfannkuche D 2007 Phys. Rev. A 75 013614
[29] Hao Y and Chen S 2009 Eur. Phys. J. D 51 261
[30] Hao Y, Zhang Y, Guan X W and Chen S 2009 Phys. Rev. A 79 033607
[31] Girardeau M D and Minguzzi A 2007 Phys. Rev. Lett. 99 230402
[32] Yang C N and Yang C P 1969 J. Math. Phys. 10 1115
[33] Yin X, Chen S and Zhang Y 2008 Phys. Rev. A 79 053604
[34] Zhao E, Guan X W, Liu W V, Batchelor M T and Oshikawa M 2009 Phys. Rev. Lett. 103 140404
[35] Amerongen A H V, Es J J P V, Wicke P, Kheruntsyan K V and Druten N J V 2008 Phys. Rev. Lett. 100 090402
[36] Peng S G, Bohloul S S, Liu X J, Hu H and Drummond P D 2010 Phys. Rev. A 82 063633
[37] Lieb E H and Liniger W 1963 Phys. Rev. 130 1605
[38] Menotti C and Stringari S 2002 Phys. Rev. A 66 043610
[1] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[2] Understanding the battery safety improvement enabled by a quasi-solid-state battery design
Luyu Gan(甘露雨), Rusong Chen(陈汝颂), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(11): 118202.
[3] Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy
Xiu-Xing Zhang(张修兴), Fang-Jv Li(李芳菊), Kai Wang(王凯), Jing Xue(薛晶), Guang-Wen Huo(霍广文), Ai-Ping Fang(方爱平), and Hong-Rong Li(李宏荣). Chin. Phys. B, 2021, 30(9): 090504.
[4] Effect of radiation on compressibility of hot dense sodium and iron plasma using improved screened hydrogenic model with l splitting
Amjad Ali, G Shabbir Naz, Rukhsana Kouser, Ghazala Tasneem, M Saleem Shahzad, Aman-ur-Rehman, and M H Nasim. Chin. Phys. B, 2021, 30(3): 033102.
[5] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[6] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[7] Establishment and evaluation of a co-effect structure with thermal concentration-rotation function in transient regime
Yi-yi Li(李依依), Hao-chun Zhang(张昊春). Chin. Phys. B, 2020, 29(8): 084401.
[8] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[9] Thermodynamics and weak cosmic censorship conjecture of charged AdS black hole in the Rastall gravity with pressure
Xin-Yun Hu(胡馨匀), Ke-Jian He(何柯健), Zhong-Hua Li(李中华), Guo-Ping Li(李国平). Chin. Phys. B, 2020, 29(5): 050401.
[10] Energy cooperation in quantum thermoelectric systems withmultiple electric currents
Yefeng Liu(刘叶锋), Jincheng Lu(陆金成), Rongqian Wang(王荣倩), Chen Wang(王晨), Jian-Hua Jiang(蒋建华). Chin. Phys. B, 2020, 29(4): 040504.
[11] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[12] Thermal properties of regular black hole with electric charge in Einstein gravity coupled to nonlinear electrodynamics
Yi-Huan Wei(魏益焕). Chin. Phys. B, 2019, 28(12): 120401.
[13] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[14] Geometry and thermodynamics of smeared Reissner-Nordström black holes in d-dimensional AdS spacetime
Bo-Bing Ye(叶伯兵), Ju-Hua Chen(陈菊华), Yong-Jiu Wang(王永久). Chin. Phys. B, 2017, 26(9): 090202.
[15] Crystallization behaviors of ultrathin Al-doped HfO2 amorphous films grown by atomic layer deposition
Xue-Li Ma(马雪丽), Hong Yang(杨红), Jin-Juan Xiang(项金娟), Xiao-Lei Wang(王晓磊), Wen-Wu Wang(王文武), Jian-Qi Zhang(张建齐), Hua-Xiang Yin(殷华湘), Hui-Long Zhu(朱慧珑), Chao Zhao(赵 超). Chin. Phys. B, 2017, 26(2): 027701.
No Suggested Reading articles found!