Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 054501    DOI: 10.1088/1674-1056/20/5/054501
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Perturbation to Mei symmetry and Mei adiabatic invariants for discrete generalized Birkhoffian system

Zhang Ke-Jun(张克军), Fang Jian-Hui(方建会), and Li Yan(李燕)
College of Physics Science and Technology, China University of Petroleum, Dongying 257061, China
Abstract  Based on the concept of discrete adiabatic invariant, this paper studies the perturbation to Mei symmetry and Mei adiabatic invariants of the discrete generalized Birkhoffian system. The discrete Mei exact invariant induced from the Mei symmetry of the system without perturbation is given. The criterion of the perturbation to Mei symmetry is established and the discrete Mei adiabatic invariant induced from the perturbation to Mei symmetry is obtained. Meanwhile, an example is discussed to illustrate the application of the results.
Keywords:  discrete generalized Birkhoffian system      Mei symmetry      perturbation      Mei adiabatic invariant  
Received:  13 September 2010      Revised:  21 October 2010      Accepted manuscript online: 
PACS:  45.05.+x (General theory of classical mechanics of discrete systems)  
  02.20.Sv (Lie algebras of Lie groups)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 09CX04018A).

Cite this article: 

Zhang Ke-Jun(张克军), Fang Jian-Hui(方建会), and Li Yan(李燕) Perturbation to Mei symmetry and Mei adiabatic invariants for discrete generalized Birkhoffian system 2011 Chin. Phys. B 20 054501

[1] Zhao Y Y and Mei F X 1999 Symmetries and Invariants of Mechanical Systems (Beijing: Science Press) (in Chinese)
[2] Birkhoff G D 1927 Dynamical Systems (Providence RI: AMS College Publications)
[3] Santilli R M 1978 Foundations of Theoretical Mechanics (New York: Springer)
[4] Mei F X 1993 Sci. China Ser. A 36 1456
[5] Chen X W, Luo S K and Mei F X 2000 Acta Mech. Sol. Sin. 21 251 (in Chinese)
[6] Guo H Y, Luo S K and Mei F X 2001 Rep. Math. Phys. 47 33
[7] Fu J L, Chen L Q, Luo Y and Luo S K 2003 Chin. Phys. 12 351
[8] Luo S K and Cai J L 2003 Chin. Phys. 12 357
[9] Zhang Y 2004 Commun. Theor. Phys. 42 669
[10] Gu S L and Zhang H B 2004 Chin. Phys. 13 979
[11] Xu X J, Mei F X and Qin M C 2004 Chin. Phys. 13 1999
[12] Xu Z X 2005 Acta Phys. Sin. 54 4971 (in Chinese)
[13] Qiao Y F, Zhao S H and Li R J 2006 Chin. Phys. 15 2777
[14] Zhang P Y and Fang J H 2006 Acta Phys. Sin. 55 3813 (in Chinese)
[15] Chen X W, Zhang R C and Mei F X 2000 Acta Mech. Sin. 16 282
[16] Zhang Y 2002 Acta Phys. Sin. 51 1666 (in Chinese)
[17] Fu J L, Chen L Q and Xie F P 2003 Acta Phys. Sin. 52 2664 (in Chinese)
[18] Fu J L and Chen L Q 2004 Phys. Lett. A 324 95
[19] Luo S K and Guo Y X 2007 Commun. Theor. Phys. 47 25
[20] Ding N and Fang J H 2008 Commun. Theor. Phys. 49 1410
[21] Ding N, Fang J H and Chen X X 2008 Chin. Phys. B 17 1967
[22] Guo H Y, Li Y Q, Wu K and Wang S K 2002 Commun. Theor. Phys. 37 1
[23] Guo H Y, Li Y Q, Wu K and Wang S K 2002 Commun. Theor. Phys. 37 129
[24] Guo H Y, Li Y Q, Wu K and Wang S K 2002 Commun. Theor. Phys. 37 257
[25] Guo H Y and Wu K 2003 J. Math. Phys. 44 5978
[26] Luo X D, Guo H Y, Li Y Q and Wu K 2004 Commun. Theor. Phys. 42 443
[27] Zhang K J, Fang J H and Li Y 2010 Chin. Phys. B 19 124601 endfootnotesize
[1] Stochastic optimal control for norovirus transmission dynamics by contaminated food and water
Anwarud Din and Yongjin Li(黎永锦). Chin. Phys. B, 2022, 31(2): 020202.
[2] Simulation of detection and scattering of sound waves by the lateral line of a fish
V M Adamyan, I Y Popov, I V Blinova, and V V Zavalniuk. Chin. Phys. B, 2022, 31(2): 024301.
[3] Identification of unstable individuals in dynamic networks
Dongli Duan(段东立), Tao Chai(柴涛), Xixi Wu(武茜茜), Chengxing Wu(吴成星), Shubin Si(司书宾), and Genqing Bian(边根庆). Chin. Phys. B, 2021, 30(9): 090501.
[4] Breather solutions of modified Benjamin-Bona-Mahony equation
G T Adamashvili. Chin. Phys. B, 2021, 30(2): 020503.
[5] Dynamics analysis of a 5-dimensional hyperchaotic system with conservative flows under perturbation
Xuenan Peng(彭雪楠), Yicheng Zeng(曾以成), and Qi Xie(谢奇). Chin. Phys. B, 2021, 30(10): 100502.
[6] Identification of key residues in protein functional movements by using molecular dynamics simulations combined with a perturbation-response scanning method
Jun-Bao Ma(马君宝), Wei-Bu Wang(王韦卜), and Ji-Guo Su(苏计国). Chin. Phys. B, 2021, 30(10): 108701.
[7] Growth induced buckling of morphoelastic rod in viscous medium
Yitong Zhang(张一桐), Shuai Zhang(张帅), Peng Wang(王鹏). Chin. Phys. B, 2020, 29(5): 054501.
[8] The (3+1)-dimensional generalized mKdV-ZK equation for ion-acoustic waves in quantum plasmas as well as its non-resonant multiwave solution
Xiang-Wen Cheng(程香雯), Zong-Guo Zhang(张宗国), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2020, 29(12): 124501.
[9] Dependence of photoelectron-momentum distribution of H2+ molecule on orientation angle and laser ellipticity
Hong-Dan Zhang(张宏丹), Si-Qi Zhang(张思琪), Lei Ji(纪磊), Qi Zhen(甄琪), Jing Guo(郭静), Xue-Shen Liu(刘学深). Chin. Phys. B, 2019, 28(5): 053201.
[10] Discrete symmetrical perturbation and variational algorithm of disturbed Lagrangian systems
Li-Li Xia(夏丽莉), Xin-Sheng Ge(戈新生), Li-Qun Chen(陈立群). Chin. Phys. B, 2019, 28(3): 030201.
[11] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[12] Effect of transient space-charge perturbation on carrier transport in high-resistance CdZnTe semiconductor
Yu Guo(郭玉), Gang-Qiang Zha(查钢强), Ying-Rui Li(李颖锐), Ting-Ting Tan(谭婷婷), Hao Zhu(朱昊), Sen Wu(吴森). Chin. Phys. B, 2019, 28(11): 117201.
[13] Effects of resonant magnetic perturbation on the instability of single tearing mode with non-shear flow
Le Wang(王乐), Ming Yang(阳明), Wen-Bin Lin(林文斌). Chin. Phys. B, 2019, 28(1): 015203.
[14] Ground-state energy of beryllium atom with parameter perturbation method
Feng Wu(吴锋), Lijuan Meng(孟丽娟). Chin. Phys. B, 2018, 27(9): 093101.
[15] Determination of static dipole polarizabilities of Yb atom
Zhi-Ming Tang(唐志明), Yan-Mei Yu(于艳梅), Chen-Zhong Dong(董晨钟). Chin. Phys. B, 2018, 27(6): 063101.
No Suggested Reading articles found!