Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 054207    DOI: 10.1088/1674-1056/20/5/054207
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

High-power terahertz radiation from surface-emitted THz-wave parametric oscillator

Li Zhong-Yang(李忠洋)a)b)†, Yao Jian-Quan(姚建铨)a)b), Xu De-Gang(徐德刚) a)b), Zhong Kai(钟凯)a)b), Wang Jing-Li(汪静丽) a)b), and Bing Pi-Bin(邴丕彬)a)b)
College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University, Tianjin 300072, China; b Key Laboratory of Opto-electronics Information Science and Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
Abstract  We report a pulsed surface-emitted THz-wave parametric oscillator based on two MgO:LiNbO3 crystals pumped by a multi-longitudinal mode Q-switched Nd:YAG laser. Through varying the phase matching angle, the tunable THz-wave output from 0.79 THz to 2.84 THz is realized. The maximum THz-wave output was 193.2 nJ/pulse at 1.84 THz as the pump power density was 212.5 MW/cm2, corresponding to the energy conversion efficiency of 2.42×10-6 and the photon conversion efficiency of about 0.037%. When the pump power density changed from 123 MW/cm2 to 148 MW/cm2 and 164 MW/cm2, the maximum output of the THz-wave moved to the high frequency band. We give a reasonable explanation for this phenomenon.
Keywords:  THz-wave parametric oscillator      noncollinear phase matching      THz-wave polarization      frequency tunable output  
Received:  18 November 2010      Revised:  17 January 2011      Accepted manuscript online: 
PACS:  42.65.Yj (Optical parametric oscillators and amplifiers)  
  42.65.Dr (Stimulated Raman scattering; CARS)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2007CB310403), the National Natural Science Foundation of China (Grant No. 60801017), and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070420118).

Cite this article: 

Li Zhong-Yang(李忠洋), Yao Jian-Quan(姚建铨), Xu De-Gang(徐德刚), Zhong Kai(钟凯), Wang Jing-Li(汪静丽), and Bing Pi-Bin(邴丕彬) High-power terahertz radiation from surface-emitted THz-wave parametric oscillator 2011 Chin. Phys. B 20 054207

[1] Siegel P 2002 IEEE Trans. Microwave Theory Tech. 50 910
[2] Kawase K, Ogawa Y, Watanabe Y and Inoue H 2003 Opt. Express 11 2549
[3] Hu M, Zhang Y X, Yan Y, Zhong R B and Liu S G 2009 Chin. Phys. B 18 3877
[4] Kuznetsova E, Rostovtsev Y, Kalugin N G, Kolesov R, Kocharovskaya O and Scully M O 2006 Phys. Rev. A 74 023819
[5] Suizu K and Kawase K 2007 Opt. Lett. 32 2990
[6] Sun B, Liu J S, Li E B and Yao J Q 2009 Chin. Phys. B 18 2846
[7] Guo R X, Akiyama K and Minamide H 2007 Appl. Phys. Lett. 90 121127
[8] Kawase K, Shikata J, Imai K and Ito H 2001 Appl. Phys. Lett. 78 2819
[9] Molter D, Theuer M and Beigang R 2009 Opt. Express 17 6623
[10] Edwards T, Walsh D, Spurr M, Rae C and Dunn M 2006 Opt. Express 14 1582
[11] Ikari T, Zhang X B, Minamide H and Ito H 2006 Opt. Express 14 1604
[12] Xu G, Mu X, Ding Y J and Zotova I B 2009 Opt. Lett. 34 995
[13] Yeh K L, Hoffmann M C, Hebling J and Nelson K A 2007 Appl. Phys. Lett. 90 171121
[14] Sussman S S 1970 Report of Microwave Lab, Stanford University No. 1851 endfootnotesize
[1] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[2] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[3] High-energy picosecond single-pass multi-stage optical parametric generator and amplifier
Yang Yu(余洋), Zhao Liu(刘钊), Ke Liu(刘可), Chao Ma(马超), Hong-Wei Gao(高宏伟), Xiao-Jun Wang(王小军), Yong Bo(薄勇), Da-Fu Cui(崔大复), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(1): 014204.
[4] A 515-nm laser-pumped idler-resonant femtosecond BiB3O6 optical parametric oscillator
Jinfang Yang(杨金芳), Zhaohua Wang(王兆华), Jiajun Song(宋贾俊), Renchong Lv(吕仁冲), Xianzhi Wang(王羡之), Jiangfeng Zhu(朱江峰), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(1): 014213.
[5] Modeling of cascaded high isolation bidirectional amplification in long-distance fiber-optic time and frequency synchronization system
Kuan-Lin Mu(穆宽林), Xing Chen(陈星), Zheng-Kang Wang(王正康), Yao-Jun Qiao(乔耀军), and Song Yu(喻松). Chin. Phys. B, 2021, 30(7): 074208.
[6] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
[7] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[8] High-gain and low-distortion Brillouin amplification based on pump multi-frequency intensity modulation
Li-Wen Sheng(盛立文), De-Xin Ba(巴德欣), Zhi-Wei Lv(吕志伟). Chin. Phys. B, 2019, 28(2): 024212.
[9] Generation of squeezed vacuum on cesium D2 line down to kilohertz range
Jian-Feng Tian(田剑锋), Guan-Hua Zuo(左冠华), Yu-Chi Zhang(张玉驰), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2017, 26(12): 124206.
[10] Phase estimation of phase shifts in two arms for an SU(1,1) interferometer with coherent and squeezed vacuum states
Qian-Kun Gong(龚乾坤), Dong Li(李栋), Chun-Hua Yuan(袁春华), Ze-Yu Qu(区泽宇), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2017, 26(9): 094205.
[11] The influence of stimulated temperature-dependent emission cross section on intracavity optical parametric oscillator
S Samimi, A Keshavarz. Chin. Phys. B, 2017, 26(2): 024207.
[12] A proposal for the generation of optical frequency comb in temperature insensitive microcavity
Xun Lei(雷勋), D an Bian(边丹丹), Shaowu Chen(陈少武). Chin. Phys. B, 2016, 25(11): 114214.
[13] Generation of entangled TEM01 modes withperiodically poled KTiOPO4 crystal
Rong-Guo Yang(杨荣国), Jing-jing Wang(王晶静), Jing Zhang(张静), Heng-Xin Sun(孙恒信). Chin. Phys. B, 2016, 25(7): 074208.
[14] Tunable, continuous-wave single-resonant optical parametric oscillator with output coupling for resonant wave
Xiong-Hua Zheng(郑雄桦), Bao-Fu Zhang(张宝夫), Zhong-Xing Jiao(焦中兴), Biao Wang(王彪). Chin. Phys. B, 2016, 25(1): 014208.
[15] Tunable femtosecond near-infrared source based on a Yb:LYSO-laser-pumped optical parametric oscillator
Wen-Long Tian(田文龙), Zhao-Hua Wang(王兆华), Jiang-Feng Zhu(朱江峰), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(1): 014207.
No Suggested Reading articles found!