|
|
Feasible schemes for quantum swap gates of optical qubits via cavity QED |
Tang Shi-Qing(唐世清), Zhang Deng-Yu(张登玉)†, Wang Xin-Wen(汪新文), Xie Li-Jun(谢利军), and Gao Feng(高峰) |
Department of Physics and Electronic Information Science, and Research Institute of Photoelectricity, Hengyang Normal University, Hengyang 421008, China |
|
|
Abstract Feasible schemes for implementing quantum swap gates of both coherent-state qubits and photonic qubits are proposed using a $\Lambda$-type atomic ensemble trapped in a bimodal optical cavity. In both protocols, the decoherence from atomic spontaneous emission is negligible due to the fact that the excited states of the atoms are adiabatically eliminated under large detuning condition and the swap gates can be created in a single step. In our schemes, the required atoms-cavity interaction time decreases with the increase of the number of atoms, which is very important in view of decoherence. The experimental feasibilities of the schemes are also discussed.
|
Received: 07 July 2010
Revised: 05 December 2010
Accepted manuscript online:
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11004050), the Key Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 09A013), the Scientific Research Fund of Hunan Provincial Education Department of China (Grant No. 10B013), the Science and Technology Research Foundation of Hunan Province of China (Grant No. 2010FJ4120) and the Science Foundation of Hengyang Normal University, China (Grant No. 09A28). |
Cite this article:
Tang Shi-Qing(唐世清), Zhang Deng-Yu(张登玉), Wang Xin-Wen(汪新文), Xie Li-Jun(谢利军), and Gao Feng(高峰) Feasible schemes for quantum swap gates of optical qubits via cavity QED 2011 Chin. Phys. B 20 040308
|
[1] |
Shor P 1994 Proceedings of the 35th Annual Symposium on the Foundations of Computer Science (IEEE Los Alomitos: Computer Society Press CA) pp. 124--134
|
[2] |
Grover L K 1998 Phys. Rev. Lett. 80 4329
|
[3] |
Tang S Q, Zhang D Y, Xie L J, Zhan X G and Gao F 2009 Chin. Phys. B 18 56
|
[4] |
Tang S Q, Zhang D Y, Xie L J, Zhan X G and Gao F 2009 Chin. Phys. Lett. 26 020310
|
[5] |
Shao X Q, Chen L and Zhang S 2009 Chin. Phys. B 18 440
|
[6] |
Zhang D Y, Tang S Q, Xie L J, Zhan X G, You K M and Gao F 2009 Int. J. Theor. Phys. 48 2685
|
[7] |
Cai J W, Fang M F, Zheng X J and Liao X P 2006 J. Mod. Opt. 53 2803
|
[8] |
Cai J W, Fang M F, Liao X P and Zheng X J 2006 Chin. Phys. 15 2518
|
[9] |
Chen C Y, Feng M and Gao K L 2006 Phys. Rev. A 73 064304
|
[10] |
Chen C Y, Feng M, Zhang X L and Gao K L 2006 Phys. Rev. A 73 032344
|
[11] |
Barenco A, Deutsch D, Ekert A and Jozsa R 1995 Phys. Rev. Lett. 74 4083
|
[12] |
Zeng H S, Wang Q, Fang X M and Kuang L M 2010 Phys. Lett. A 374 2129
|
[13] |
Liu J, Wang Q, Kuang L M and Zeng H S 2010 Chin. Phys. B 19 030313
|
[14] |
Song K H, Xiang S H, Liu Q and Lu D H 2007 Phys. Rev. A 75 032347
|
[15] |
Song K H, Zhou Z W and Guo G C 2005 Phys. Rev. A 71 052310
|
[16] |
Song K H 2005 Chin. Phys. 15 286
|
[17] |
Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
|
[18] |
Xiao Y F, Zou X B, Han Z F and Guo G C 2006 Phys. Rev. A 74 044303
|
[19] |
Ottaviani C, Rebi'c S, Vitali D and Tombesi P 2006 Phys. Rev. A 73 010301(R)
|
[20] |
Lin G W, Zou X B, Ye M Y, Lin X M and Guo G C 2008 Phys. Rev. A 77 032308
|
[21] |
Shao X Q, Chen L and Zhang S 2008 J. Phys. B: em At. Mol. Opt. Phys. 41 245502
|
[22] |
Guzmán R, Retamal J C, Solano E and Zagury N 2006 Phys. Rev. Lett. 96 010502
|
[23] |
Parkins A S, Solano E and Cirac J I 2006 Phys. Rev. Lett. 96 053602
|
[24] |
Zheng S B 2007 Opt. Commun. 277 349
|
[25] |
Joshi A, Hassan S S and Xiao M 2007 Phys. Lett. A 367 415
|
[26] |
Sangouard N, Lacour X, Guérin S and Jauslin H R 2005 Phys. Rev. A 72 062309
|
[27] |
Vatan F and Williams C 2004 Phys. Rev. A 69 032315
|
[28] |
Zheng S B 2009 Appl. Phys. Lett. 94 154101
|
[29] |
Zheng S B, Yang Z B and Xia Y 2010 Phys. Rev. A 81 015804
|
[30] |
Wu Y and Yang X X 1997 Phys. Rev. A 56 2443
|
[31] |
Wu Y and Yang X X 1997 Phys. Rev. Lett. 78 3086
|
[32] |
Shu J, Zou X B, Xiao Y F and Guo G C 2007 Phys. Rev. A 75 044302
|
[33] |
Poyatos J F, Cirac J I and Zoller P 1997 Phys. Rev. Lett. 78 390
|
[34] |
Zheng X J, Fang M F, Cai J W, Cao S and Liao X P 2006 J. Phys. B: At. Mol. Opt. Phys. 39 4701
|
[35] |
Dong Y L, Zou X B, Zhang S L, Yang S, Li C F and Guo G C 2009 J. Mod. Opt. 56 1230
|
[36] |
McKeever J, Buck J R, Boozer A D and Kimble H J 2004 Phys. Rev. Lett. 93 143601
|
[37] |
Boca A, Miller R, Birnbaum K M, Boozer A D, Mckeever J and Kimble H J 2004 Phys. Rev. Lett. 93 233603 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|