Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 033401    DOI: 10.1088/1674-1056/20/3/033401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

The dynamical properties of a Rydberg hydrogen atom between two parallel metal surfaces

Liu Wei(刘伟)a)†, Li Hong-Yun(李洪云)b), Yang Shan-Ying(杨善迎)b), and Lin Sheng-Lu(林圣路)c)
a News Center, University of Jinan, Jinan 250022, China; b Department of Information Engineering, Laiwu Vocational and Technical College, Laiwu 271100, China; c College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Abstract  This paper presents the dynamical properties of a Rydberg hydrogen atom between two metal surfaces using phase space analysis methods. The dynamical behaviour of the excited hydrogen atom depends sensitively on the atom–surface distance d. There exists a critical atom–surface distance dc = 1586 a.u. When the atom–surface distance d is larger than the critical distance dc, the image charge potential is less important than the Coulomb potential, the system is near-integrable and the electron motion is regular. As the distance d decreases, the system will tend to be non-integrable and unstable, and the electron might be captured by the metal surfaces.
Keywords:  Poincaré      surfaces of section      chaos      the phase space analysis methods  
Received:  13 July 2010      Revised:  22 August 2010      Accepted manuscript online: 
PACS:  34.35.+a (Interactions of atoms and molecules with surfaces)  
  03.65.Sq (Semiclassical theories and applications)  
  05.45.Mt (Quantum chaos; semiclassical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10774093) and the Natural Science Foundation of Shandong Province (Grant No. ZR2009FZ006).

Cite this article: 

Liu Wei(刘伟), Li Hong-Yun(李洪云), Yang Shan-Ying(杨善迎), and Lin Sheng-Lu(林圣路) The dynamical properties of a Rydberg hydrogen atom between two parallel metal surfaces 2011 Chin. Phys. B 20 033401

[1] Johnson T A, Urban E, Henage T, Isenhower L, Yavuz D D, Walker T G and Saffman M 2008 Phys. Rev. Lett. 100 113003
[2] Hamilton E L, Greene C H and Sadeghpour H R 2002 J. Phys. B 35 L199
[3] Landragin A, Courtois J Y, Labeyrie G, Vansteenkiste N, Westbrook C I and Aspect A 1996 Phys. Rev. Lett. 77 1464
[4] Huang K Y and Wang D H 2010 Chin. Phys. B 19 063402
[5] Simonovic N S 1997 J. Phys. B 30 L613
[6] Ganesan K and Taylor K T 1996 J. Phys. B 29 1293
[7] Salas J P and Simonovic N S 2000 J. Phys. B 33 291
[8] Wang D H 2006 Chin. Phys. Lett. 23 2745
[9] Wang D H 2007 Chin. Phys. 16 0692
[10] Jackson J D 1975 Classical Electrodynamics (2nd) (New York: John Wiley)
[11] Dando P A, Monteiro T S, Delande D and Taylor K T 1996 Phys. Rev. A 54 127
[12] Courtney M and Kleppner D 1996 Phys. Rev. A 53 178
[13] Meyer H D 1986 J. Chem. Phys. 84 3147 endfootnotesize
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[3] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[7] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[8] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[13] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[14] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[15] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
No Suggested Reading articles found!