|
|
Accurate potential energy function and spectroscopic study of the X$^2\Sigma^+$, A$^2\Pi$ and B$^2\Sigma^+$ states of the CP radical |
Liu Yu-Fang(刘玉芳)† and Jia Yi(贾毅) |
College of Physics & Information Engineering, Henan Normal University, Xinxiang 453007, China |
|
|
Abstract This paper calculates the equilibrium internuclear separations, the harmonic frequencies and the potential energy curves of the X$^{2}\Sigma ^{ + }$, A$^{2}\Pi$ and B$^{2}\Sigma ^{ + }$ states of the CP radical by the highly accurate valence internally contracted multireference configuration interaction method with correlation-consistent basis sets (aug-cc-pV6Z for C atom and aug-cc-pVQZ for P atom). The potential energy curves are all fitted with the analytic potential energy function by the least-square fitting. Employing the analytic potential energy function, we determine the spectroscopic constants ($B_{\rm e}$, $\alpha_{\rm e}$ and $\omega_{\rm e}\chi _{\rm e})$ of these states. For the X$^{2}\Sigma ^{ + }$ state, the obtained values of $D_{\rm e}$, ${B}_{\rm e}$, $\alpha_{\rm e}$, $\omega _{\rm e}\chi _{\rm e}$, $R_{\rm e}$ and $\omega _{\rm e}$ are 5.4831 eV, 0.792119 cm$^{-1}$, 0.005521 cm$^{ - 1}$, 6.89653 cm$^{ - 1}$, 0.15683 nm, 12535.11 cm$^{ - 1}$, respectively. For the A$^{2}\Pi$ state, the present values of $D_{\rm e}$, ${B}_{\rm e}$, $\alpha_{\rm e}$, $\omega _{\rm e}\chi _{\rm e}$, $R_{\rm e}$ and $\omega _{\rm e}$ are 4.586 eV, 0.703333 cm$^{ - 1}$, 0.005458 cm$^{ - 1}$, 6.03398 cm$^{ - 1}$, 0.16613 nm, 1057.89 cm$^{ - 1}$, respectively. For the B$^{2}\Sigma ^{ + }$ state, the present values of $D_{\rm e}$, ${B}_{\rm e}$, $\alpha_{\rm e}$, $\omega _{\rm e}\chi _{\rm e}$, $R_{\rm e}$ and $\omega _{\rm e}$ are 3.506 eV, 0.677561 cm$^{ - 1}$, 0.00603298 cm$^{ - 1}$, 5.68809 cm$^{ - 1}$, 0.1696 nm, 822.554 cm$^{ - 1}$, respectively. For these states, the vibrational states with the rotational quantum number $J$ equals zero ($J = 0$) are studied by solving the radial nuclear Schrödinger equation using the Numerov method. For each vibrational state, the vibrational level, the classical turning points, the rotational inertial and the centrifugal distortion constants are calculated. Comparison is made with recent theoretical and experimental results.
|
Received: 30 June 2010
Revised: 18 September 2010
Accepted manuscript online:
|
PACS:
|
31.50.-x
|
(Potential energy surfaces)
|
|
34.20.-b
|
(Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)
|
|
31.15.A
|
|
|
33.15.Mt
|
(Rotation, vibration, and vibration-rotation constants)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874064) and the Program for Science & Technology Innovation Talents in Universities of Henan Province in China (Grant No. 2008HASTIT008). |
Cite this article:
Liu Yu-Fang(刘玉芳) and Jia Yi(贾毅) Accurate potential energy function and spectroscopic study of the X$^2\Sigma^+$, A$^2\Pi$ and B$^2\Sigma^+$ states of the CP radical 2011 Chin. Phys. B 20 033106
|
1 |
J. Mol. Spectrosc Ram R S, Tam S and Bernath P F 1992 152 89 2 Nature Herzberg G 1930 126 131 3 Ann. Phys B"arwald H, Herzberg G and Herzberg L 1934 20 569 4 Ind. J. Phys Chaudhry A K and Upadhya K N 1969 43 83 5 Pramana Tripathi R, Rai S B and Upadhya K N 1981 17 249 6 J. Mol. Spectosc. bf Ram R S and Bernath P F 1987 122 282 7 Astrophys. J Saito S, Yamamoto S, Kawaguchi K, Ohishi M, Suzuki H, Ishikawa S I and Kaifu N 1989 341 1114 8 Ind. J. Pure Appl. Phys Singh P D and Pathak A N 1969 7 132 9 J. Quant. Spectrosc. Radiat. Transfer Wentink T and Spindler R J 1970 10 609 10 J. Phys. B Murthy N S and Murthy B N 1970 3 11 Pramana Murthy N S, Gowda L S and Murthy B N 1976 6 25 12 Chem. Phys. Lett Rohlfing C M and Alml"Of J 1988 147 258 13 Chem. Phys. Lett Richman K W, Shi Z G and Mccullough E A 1987 141 186 14 J. Phys. B bf de Brouck`ere G and Feller D 1996 29 5283 15 J. Phys. B de Brouck`ere G 1997 30 1847 16 Chem. Phys. Lett Knowles P J and Werner H J 1988 145 514 17 Acta Phys. Sin Shi D H, Zhang J P, Sun J F, Liu Y F and Zhu Z L 2009 58 2369 18 Chin. Phys Gao F, Yang C L, Hu Z Y and Wang M S 2007 16 3668 19 it Acta. Phys. Sin Chen H J, Cheng X L, Tang H Y, Wang Q W and Su X F 2010 59 4556 20 J. Chem. Phys Peterson K A, Woon D E and Dunning T H 1994 100 7410 21 J. Chem. Phys. bf Woon D E and Dunning T H 1993 98 1358 22 Comput. Phys Gonz'alez J L M Q and Thompson D 1997 11 514 23 Acta Phys. Sin Wang X Q, Yang C L, Su T and Wang M S 2009 58 6873 24 it Chin. Phys. B Zhang X N, Shi D H, Zhang J P, Zhu Z L and Sun J F 2010 19 053401 25 Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure IV Constants of Diatomic Molecules (New York: van Nostrand Reinhold Company) p420 26 J. Chem. Phys McLean A D, Liu B and Chandler G S 1992 97 8459 27 Chem. Phys Gu J P, Buenker R J and Hirsch G 1994 185 39 28 J. Phys. B bf de Brouckèrey G and Feller D 1998 31 5053
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|