Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 025203    DOI: 10.1088/1674-1056/20/2/025203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Effects of dust size distribution in ultracold quantum dusty plasmas

Qi Xue-Hong(祁学宏)a),Duan Wen-Shan(段文山)a), Chen Jian-Min(陈建敏)b),and Wang Shan-Jin(王善进)c)
a College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China; b State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; c School of Electronic Engineering, Dongguan University of Technology, Dongguan 523106, China
Abstract  The effect of dust size distribution in ultracold quantum dusty plasmas are investigated in this paper. How the dispersion relation and the propagation velocity for the quantum dusty plasma vary with the system parameters and the different dust distribution are studied. It is found that as the Fermi temperature of the dust grains increases the frequency of the wave increases for large wave number dust acoustic wave. The quantum parameter of Hd also increases the frequency of the large wave number dust acoustic wave. It is also found that the frequency $\omega_0$ and the propagation velocity $v_0$ of quantum dust acoustic waves all increase as the total number density increases. They are greater for unusual dusty plasmas than those of the usual dusty plasma.
Keywords:  quantum dusty plasmas      dispersion relation      velocity of soliton  
Received:  31 March 2010      Revised:  18 May 2010      Accepted manuscript online: 
PACS:  52.35.Sb (Solitons; BGK modes)  
  52.35.Vy  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10875098) and the Natural Science Foundation of Northwest Normal University, China (Grant Nos. NWNU-KJCXGC-03-48 and NWNU-KJCXGC-03-17).

Cite this article: 

Qi Xue-Hong(祁学宏), Duan Wen-Shan(段文山), Chen Jian-Min(陈建敏), and Wang Shan-Jin(王善进) Effects of dust size distribution in ultracold quantum dusty plasmas 2011 Chin. Phys. B 20 025203

[1] Rosenberg M and Kalman G 1997 Phys. Rev. E 56 7166
[2] Shukla P K 1992 Phys. Scr. 45 504
[3] Verheest F 1996 Space Sci. Rev. 77 267
[4] Evans A 1993 The Dusty Universe (New York: Ellis Horwood Pub.)
[5] Shukla P K and Mamun A A 2002 Introduction to Dusty Plasma Physics (Bristol: Institute of Physics)
[6] Fortov V E, Ivlev A V, Khrapak S A and Morfill G E 2005 Phys. Rep. 1 421
[7] Rao N N, Shukla P K and Yu M Y 1990 Planet. Space Sci. 38 543
[8] Shukla P K and Silin V P 1992 Phys. Scr. 45 508
[9] Barkan A, Merlino R L and Dángelo N 1995 Phys. Plasmas 2 3563
[10] Morfill G E and Thomas H 1996 J. Vac. Sci. Technol. A 14 490
[11] Merlino R L, Barkan A, Thompson C and Dángelo N 1990 Planet. Space Sci. 38 1143
[12] Shukla P K and Ali S 2005 Phys. Plasmas 12 114502
[13] Ali S and Shukla P K 2006 Phys. Plasmas 13 022313
[14] Misra A P and Chowdhury A R 2006 Phys. Plasmas 13 072305
[15] Moslem W M, Shukla P K, Ali S and Schlikeiser R 2007 Phys. Plasmas 14 042107
[16] Shukla P K 2006 Phys. Lett. A 352 242
[17] Markowich P A, Ringhofer C A and Schmeiser C 1990 Semiconductor Equations (Vienna: Springer)
[18] Jung Y D 2001 Phys. Plasmas 8 3842
[19] Manfredi G 2005 Fields Inst. Commun. 46 263
[20] Kremp D, Bornath Th, Bonitz M and Shlanges M 1999 Phys. Rev. E 60 4725
[21] Manfredi G and Haas F 2001 Phys. Rev. B 64 075316
[22] Meuris P 1997 Planet. Space Sci. 45 1171
[23] Verheest F, Jacobs G and Cattaert T 2003 New. J. Phys. 5 211
[24] Cattaert T and Verheest F 2004 IEEE Trans. Plasma Sci. 32 537
[25] He G J, Duan W S and Tian D X 2008 Phys. Plasmas 15 043702
[26] Chen J H 2009 Chin. Phys. B 18 2121
[27] Brattll A, Havens Q and Melandso F J 1997 Plasmas Phys. 58 691
[28] Chow V W, Mendis D A and Rosenberg M J 1993 J. Geophys. Res. 98 19056
[29] Ei-Labany S K, Ei-Siragy N M, Ei-Taibany W Fand Behery E E 2009 Phys. Plasmas 16 093701
[30] Haas F, Garcial L G, Goedert J and Manfriedi G 2003 Phys. Plasmas 10 3858
[31] Duan W S and Shi Y R 2003 Chaos, Solitions and Fractals 18 321
[32] El-Taibany W F and Wadati M 2007 Phys. Plasmas 14 042302
[33] Washimi H and Taniuti T 1966 Phys. Rev. Lett. 17 996
[1] Kinetic Alfvén waves in a deuterium-tritium fusion plasma with slowing-down distributed α-particles
Fei-Fei Lu(路飞飞) and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(3): 035201.
[2] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[3] Graphene's photonic and optoelectronic properties-A review
A J Wirth-Lima, P P Alves-Sousa, W Bezerra-Fraga. Chin. Phys. B, 2020, 29(3): 037801.
[4] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏). Chin. Phys. B, 2018, 27(9): 094216.
[5] Resonant surface plasmons of a metal nanosphere treated as propagating surface plasmons
Yu-Rui Fang(方蔚瑞), Xiao-Rui Tian(田小锐). Chin. Phys. B, 2018, 27(6): 067302.
[6] Spoof surface plasmon-based bandpass filter with extremely wide upper stopband
Xiaoyong Liu(刘小勇), Lei Zhu(祝雷), Yijun Feng(冯一军). Chin. Phys. B, 2016, 25(3): 034101.
[7] Effect of multicomponent dust grains in a cold quantum dusty plasma
Yang Xiu-Feng(杨秀峰), Wang Shan-Jin(王善进), Chen Jian-Min(陈建敏), Shi Yu-Ren(石玉仁), Lin Mai-Mai(林麦麦), and Duan Wen-Shan(段文山) . Chin. Phys. B, 2012, 21(5): 055202.
[8] A k·p analytical model for valence band of biaxial strained Ge on (001) Si1-xGex
Wang Guan-Yu(王冠宇), Zhang He-Ming(张鹤鸣), Gao Xiang(高翔), Wang Bin(王斌), and Zhou ChunYu(周春宇) . Chin. Phys. B, 2012, 21(5): 057103.
[9] Dispersion relation of dust acoustic waves in metallic multi-walled carbon nanotubes
Ali Fathalian and Shahram Nikjo . Chin. Phys. B, 2012, 21(5): 057306.
[10] Dispersion relation of excitation mode in spin-polarized Fermi gas
Liu Ke(刘可) and Chen Ji-Sheng(陈继胜) . Chin. Phys. B, 2012, 21(3): 030309.
[11] Surface plasmon–polaritons on ultrathin metal films
Quan Jun(全军), Tian Ying(田英), Zhang Jun(张军), and Shao Le-Xi(邵乐喜) . Chin. Phys. B, 2011, 20(4): 047201.
[12] The surface plasmon polariton dispersion relations in a nonlinear-metal-nonlinear dielectric structure of arbitrary nonlinearity
Liu Bing-Can(刘炳灿), Yu Li(于丽), and Lu Zhi-Xin(逯志欣). Chin. Phys. B, 2011, 20(3): 037302.
[13] The dispersion relations for surface plasmon in a nonlinear–metal–nonlinear dielectric structure
Liu Bing-Can(刘炳灿), Yu Li(于丽), Lu Zhi-Xin(逯志欣), and Zhang Kai(张恺). Chin. Phys. B, 2010, 19(9): 097303.
[14] Wave growth rate in a cylindrical metal waveguide with ion-channel guiding of a relativistic electron beam
Li Hai-Rong(李海容), Tang Chang-Jian(唐昌建), and Wang Shun-Jin(王顺金). Chin. Phys. B, 2010, 19(12): 124101.
[15] Phonon dispersion relations and soft modes of 4? carbon nanotubes
Miao Ling(缪灵), Liu Hui-Jun(刘惠军), Hu Yi(胡懿), Zhou Xiang(周详), Hu Cheng-Zheng(胡承正), and Shi Jing(石兢). Chin. Phys. B, 2010, 19(1): 016301.
No Suggested Reading articles found!