Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 024208    DOI: 10.1088/1674-1056/20/2/024208
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Spontaneous-emission control by local density of states of photonic crystal cavity

Jiang Bin(江斌)a), Zhang Ye-Jin(张冶金) a), Zhou Wen-Jun(周文君)a), Chen Wei(陈微)a), Liu An-Jin(刘安金)a), and Zheng Wan-Hua(郑婉华)a)b)†
a Nano-optoelectronics Laboratory, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; b State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  The local density of states (LDOS) of two-dimensional square lattice photonic crystal (PhC) defect cavity is studied. The results show that the LDOS in the centre is greatly reduced, while the LDOS at the point off the centre (for example, at the point (0.3a, 0.4a), where a is the lattice constant) is extremely enhanced. Further, the disordered radii are introduced to imitate the real devices fabricated in our experiment, and then we study the LDOS of PhC cavity with configurations of different disordered radii. The results show that in the disordered cavity, the LDOS in the centre is still greatly reduced, while the LDOS at the point (0.3a, 0.4a) is still extremely enhanced. It shows that the LDOS analysis is useful. When a laser is designed on the basis of the square lattice PhC rod cavity, in order to enhance the spontaneous emission, the active materials should not be inserted in the centre of the cavity, but located at positions off the centre. So LDOS method gives a guide to design the positions of the active materials (quantum dots) in the lasers.
Keywords:  spontaneous emission      local density of states      photonic crystal cavity  
Received:  11 August 2010      Revised:  30 August 2010      Accepted manuscript online: 
PACS:  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.70.Qs (Photonic bandgap materials)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2006CB921705), the National Natural Science Foundation of China (Grant Nos. 10634080, 60677046 and 60838003), and the National High Technology Research and Development Program of China (Grant Nos. 2007AA03Z410 and 2007AA03Z408).

Cite this article: 

Jiang Bin(江斌), Zhang Ye-Jin(张冶金), Zhou Wen-Jun(周文君), Chen Wei(陈微), Liu An-Jin(刘安金), and Zheng Wan-Hua(郑婉华) Spontaneous-emission control by local density of states of photonic crystal cavity 2011 Chin. Phys. B 20 024208

[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Noda S, Chutinan A and Imada M 2000 Nature 407 608
[4] Ren G, Zheng W H, Wang K, Du X Y, Xing M X and Chen L H 2008 Chin. Phys. B 17 2553
[5] Shinya A, Mitsugi S, Kuramochi E and Notomi M 2006 Opt. Express 14 12394
[6] Chen W, Xing M X, Ren G, Wang K, Du X Y, Zhang Y J and Zheng W H 2009 Acta Phys. Sin. 58 3955 (in Chinese)
[7] Painter O, Lee R K, Scherer A, Yariv A, O'Obrien J D, Dapkus P D and Kim I 1999 Science 284 1819
[8] Loudon R 2000 The Quantum Theory of Light (New York: Oxford University Press)
[9] Busch K and John S 1998 Phys. Rev. E 58 3896
[10] Busch K, Lölkes S, Wehrspohn R B and Föll H 2004 Photonic Crystals (Weinheim: Wiley-VCH)
[11] Francs G C D, Girard C, Weeber J C, Chicane C, David T and Dereux A 2001 Phys. Rev. Lett. 86 4950
[12] Francs G C D, Grandidier J, Massenot S, Bouhelier A, Weeber J C and Dereux A, 2009 Phys. Rev. B 80 115419
[13] Lodahl P, Driel A F, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D and Vos W L 2004 Nature 430 654
[14] Zhao L M, Gu B Y, Yang G Z and Zhou Y S 2007 Phys. Lett. A 370 413
[15] Koenderink A F, Bechger L, Schriemer H P, Lagendijk A and Vos W L 2002 Phys. Rev. Lett. 88 143903
[16] Tsai Y C, Lin C F and Chang J W 2009 Opt. Rev. 16 347
[17] Zeng Y, Chen X S and Lu W 2004 Phys. Rev. E 70 047601
[18] Rao V S C M and Hughes S 2007 Phys. Rev. Lett. 99 193901 endfootnotesize
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[3] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[4] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[5] Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser
Zexin Song(宋泽鑫), Qi Bian(卞奇), Yu Shen(申玉), Keling Gong(龚柯菱), Nan Zong(宗楠), Qingshuang Zong(宗庆霜), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(5): 054208.
[6] Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚). Chin. Phys. B, 2021, 30(2): 027801.
[7] Temperature and excitation dependence of stimulated emission and spontaneous emission in InGaN epilayer
Xuee An(安雪娥), Zhengjun Shang(商正君), Chuanhe Ma(马传贺), Xinhe Zheng(郑新和), Cuiling Zhang(张翠玲), Lin Sun(孙琳), Fangyu Yue(越方禹), Bo Li(李波), Ye Chen(陈晔). Chin. Phys. B, 2019, 28(5): 057802.
[8] Demonstration of multi-Watt all-fiber superfluorescent source operating near 980 nm
Yankun Ren(任彦锟), Jianqiu Cao(曹涧秋), Hanyuan Ying(应汉辕), Heng Chen(陈恒), Zhiyong Pan(潘志勇), Shaojun Du(杜少军), Jinbao Chen(陈金宝). Chin. Phys. B, 2018, 27(3): 030703.
[9] Spontaneous emission from a microwave-driven four-level atom in an anisotropic photonic crystal
Jiang Li(姜丽), Ren-Gang Wan(万仁刚), Zhi-Hai Yao(姚治海). Chin. Phys. B, 2016, 25(10): 104204.
[10] Phase effect on dynamics of quantum discord modulated by interaction between qubits
Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2015, 24(9): 090303.
[11] Theoretical study of amplified spontaneous emission intensity and bandwidth reduction in polymer
A. Hariri, S. Sarikhani. Chin. Phys. B, 2015, 24(4): 043201.
[12] Spontaneous emission of “polarized” V-type three-level atoms strongly coupled with an optical cavity
Xue Yan-Li (薛艳丽), Zhu Shi-Deng (朱诗灯), Li Jia-Fang (李家方), Ding Wei (丁伟), Feng Bao-Hua (冯宝华), Li Zhi-Yuan (李志远). Chin. Phys. B, 2015, 24(3): 034202.
[13] Output three-mode entanglement via coherently prepared inverted Y-type atoms
Wang Fei (王飞), Qiu Jing (邱晶). Chin. Phys. B, 2014, 23(4): 044203.
[14] Laser-polarization-dependent spontaneous emission of the zero phonon line from single nitrogen–vacancy center in diamond
Zhang Duo (张多), Li Jia-Hua (李家华), Yang Xiao-Xue (杨晓雪). Chin. Phys. B, 2014, 23(4): 044204.
[15] Electron states scattering off line edges on the surface of topological insulator
Shao Huai-Hua (邵怀华), Liu Yi-Man (刘一曼), Zhou Xiao-Ying (周小英), Zhou Guang-Hui (周光辉). Chin. Phys. B, 2014, 23(10): 107304.
No Suggested Reading articles found!