Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 128903    DOI: 10.1088/1674-1056/20/12/128903
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Chaos in complex motor networks induced by Newman–Watts small-world connections

Wei Du-Qu(韦笃取)a)†, Luo Xiao-Shu(罗晓曙) a), and Zhang Bo(张波)b)
a College of Electronic Engineering, Guangxi Normal University, Guilin 541004, China; b College of Electric Power, South China University of Technology, Guangzhou 510640, China
Abstract  We investigate how dynamical behaviours of complex motor networks depend on the Newman-Watts small-world (NWSW) connections. Network elements are described by the permanent magnet synchronous motor (PMSM) with the values of parameters at which each individual PMSM is stable. It is found that with the increase of connection probability p, the motor in networks becomes periodic and falls into chaotic motion as p further increases. These phenomena imply that NWSW connections can induce and enhance chaos in motor networks. The possible mechanism behind the action of NWSW connections is addressed based on stability theory.
Keywords:  complex networks      small-world connections      chaos      permanent magnet synchronous motor  
Received:  01 June 2011      Revised:  20 June 2011      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  05.45.Ac (Low-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 50937001), the National Natural Science Foundation of China (Grant Nos. 10862001 and 10947011), and the Construction of Key Laboratories in Universities of Guangxi, China (Grant No. 200912).

Cite this article: 

Wei Du-Qu(韦笃取), Luo Xiao-Shu(罗晓曙), and Zhang Bo(张波) Chaos in complex motor networks induced by Newman–Watts small-world connections 2011 Chin. Phys. B 20 128903

[1] Wei D Q, Luo X S, Wang B H and Fang J Q 2007 emphPhys. Lett. A 363 71
[2] Wei D Q and Zhang B 2009 emphChin. Phys. B 18 1399
[3] Wei D Q, Zhang B, Qiu D Y and Luo X S 2009 emphActa Phys. Sin. 58 6026 (in Chinese)
[4] Hemati N and Kwatny H 1993 emphProc. 32/nd emphConf. Decision and Control, San Antonio, Texas, December, p. 475
[5] Li Z, Park J B, Joo Y H, Zhang B and Chen G 2002 emphIEEE Trans. Circ. Syst.-I 49 383
[6] Zahera A A 2008 emphChaos 18 13111
[7] Coria L N and Starkov K E 2009 emphCommun. Nonlinear Sci. Numer. Simul. 14 3879
[8] Jing Z J, Yu C Y and Chen G R 2004 emphChaos, Solitons and Fractals 22 831
[9] Wei D Q, Zhang B, Qiu D Y and Luo X S 2010 emphIEEE Trans. Circ. Syst.-II 57 456
[10] Newman M E J 2000 emphJ. Stat. Phys. 101 819
[11] Albert R and Barabasi A L 2002 emphRev. Mod. Phys. 74 47
[12] Qin S and Dai G Z 2009 emphChin. Phys. B 18 383
[13] Watts D J and Strogatz S H 1998 emphNature 393 440
[14] Dorogovtsev S N and Mendes J F F 2003 Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford, UK: Oxford University Press)
[15] Wang L F, Wang Q L, Kong Z and Jing Y W 2010 emphChin. Phys. B 19 080207
[16] Wei D Q, Luo X S and Qin Y H 2008 emphPhysica A 387 2155
[17] Wei D Q, Luo X S and Qin Y H 2009 emphChin. Phys. B 18 2184
[18] Wei D Q and Luo X S 2007 emphEurophys. Lett. 78 68004
[19] Newman M E J and Watts D J 1999 emphPhys. Rev. E 60 7332
[20] Qin Y H, Luo X S and Wei D Q 2010 emphChin. Phys. B 19 050511
[21] Yuan W J, Luo X S, Jiang P Q, Wang B H and Fang J Q 2008 emphChaos, Solitons and Fractals 37 799
[22] Li X, Chen G and Ko K T 2004 emphPhysica A 338 367
[23] Zhang H F, Wu R X and Fu X C 2006 emphChaos, Solitons and Fractals 28 472
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[7] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[8] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[9] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[10] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[11] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[12] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[13] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[14] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[15] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
No Suggested Reading articles found!