Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 114302    DOI: 10.1088/1674-1056/20/11/114302
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Effect of secondary radiation force on aggregation between encapsulated microbubbles

Zhang Yan-Li(张艳丽)a), Zheng Hai-Rong(郑海荣)b),Tang Meng-Xing(汤孟兴)c), and Zhang Dong(章东)a)
a Key Laboratory of Modern Acoustics of Ministry of Education, Institute of Acoustics, Nanjing University, Nanjing 210093, China; b Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518067, China; c Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
Abstract  Secondary radiation force can be an attractive force causing aggregates of encapsulated microbubbles in ultrasonic molecular imaging. The influence of the secondary radiation force on aggregation between two coated bubbles is investigated in this study. Numerical calculations are performed based on four simultaneous differential equations of radial and translational motions. Results show that the secondary force can change from attraction to repulsion during approach, and stable microbubble pairs can be formed in the vicinity of resonant regions; the possibility of microbubble aggregations can be reduced by using low exciting amplitude, ultrasonic frequencies deviating from the resonant frequencies or microbubbles with small compressibility.
Keywords:  microbubbles      secondary radiation force      aggregation  
Received:  08 April 2011      Revised:  05 May 2011      Accepted manuscript online: 
PACS:  43.35.Mr (Acoustics of viscoelastic materials)  
  43.35.Wa (Biological effects of ultrasound, ultrasonic tomography)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB707900), the National Natural Science Foundation of China (Grant Nos. 10974093, 11011130201, and 10904094), the Fundamental Research Funds for the Central Universities of China (Grant Nos. 1103020402, 1116020410, and 1112020401), the Prior Academic Program Development of Jiangsu Higher Education Institutions, China, and the State key Laboratory of Acoustics of Ministry of Education, China.

Cite this article: 

Zhang Yan-Li(张艳丽), Zheng Hai-Rong(郑海荣), Tang Meng-Xing(汤孟兴), and Zhang Dong(章东) Effect of secondary radiation force on aggregation between encapsulated microbubbles 2011 Chin. Phys. B 20 114302

[1] Winter P M, Caruthers S D, Yu X, Song S K, Chen J J, Miller B, Bulte J W M, Robertson J D, Gaffney P J, Wickline S A and Lanza G M 2003 Magnetic Resonance in Medicine 50 411
[2] Weller G E, Wong M K, Modzelewski R A, Lu E X, Klibanov A L, Wagner W R and Villanueva F S 2003 Circulation 108 515
[3] Zhang C B, Liu Z, Guo X S and Zhang D 2010 Chin. Phys. B 20 024301
[4] Klibanov A, Hughes M, Marsh J, Hall C, Miller J, Wible J and Brandenburger G 1997 Acta Radiol Suppl. 412 113
[5] Lindner J R, Jayaweera A R, Sklenar J and Kaul S 2002 J. Am. Soc. Echocardiogr 15 396
[6] Huang B, Zhang Y L, Zhang D and Gong X F 2010 Chin. Phys. B 19 054302
[7] Li X C and Sun X D 2011 Chin. Phys. B 19 119401
[8] Keller M W, Segal S S, Kaul S and Duling B R 1989 Circ. Res. bf65 458
[9] Zhao S, Borden M, Bloch S H, Kruse D, Ferrara K W and Dayton P A 2004 Mol. Imaging 3 135
[10] Hu Y, Ge Y, Zhang D, Gong X F and Zheng H R 2009 Acta Phys. Sin. 58 4746 (in Chinese)
[11] Dayton P A, Morgan K E, Klibanov A L, Brandenburger G, Nightingale K R and Ferrara K W 1997 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44 1264
[12] Dayton P A, Morgan K E, Klibanov A L, Brandenburger G H and Ferrara K W 1999 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46 220
[13] Ilinskii Y A, Hamilton M F and Zabolotskaya E A 2007J. Acoust. Soc. Am. 121 786
[14] Naoe T and Futakawa M 2007 Phys. Rev. E 76 046309
[15] Yasui K, Iida Y, Tuziuti T, Kozuka T and Towata A 2008 Phys. Rev. E 77 016609
[16] Ida M 2009 Phys. Fluids 21 113302
[17] Doinikov A A and Zavtrak S T 1995 Phys. Fluids 7 1923
[18] Doinikov A A and Zavtrak S T 1996 J. Acoust. Soc. Am. 99 3849
[19] Akhatov I, Parlitz U and Lauterborn W 1996 Phys. Rev. E 54 4990
[20] Lauterborn W and Ohl C D 1997 Ultrason. Sonochem. 4 65
[21] Mettin R, Akhatov I, Parlitz U, Ohl C D and Lauterborn W 1997 Phys. Rev. E 56, 2924
[22] Doinikov A A 2001 Phys. Rev. E 64 026301
[23] Yasui K, Lee J, Tuziuti T, Towata A, Kozuka T and Iida Y 2009 J. Acoust. Soc. Am. 126 973
[24] Marmottant P, van der Meer S, Emmer M and Versluis M 2005 J. Acoust. Soc. Am. 118 3499
[25] Church C C 1995 J. Acoust. Soc. Am. 97 1510
[1] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[2] Peptide backbone-copper ring structure: A molecular insight into copper-induced amyloid toxicity
Jing Wang(王静), Hua Li(李华), Xiankai Jiang(姜先凯), Bin Wu(吴斌), Jun Guo(郭俊), Xiurong Su(苏秀榕), Xingfei Zhou(周星飞), Yu Wang(王宇), Geng Wang(王耿), Heping Geng(耿和平), Zheng Jiang(姜政), Fang Huang(黄方), Gang Chen(陈刚), Chunlei Wang(王春雷), Haiping Fang(方海平), and Chenqi Xu(许琛琦). Chin. Phys. B, 2022, 31(10): 108702.
[3] Tunable inhibition of β-amyloid peptides by fast green molecules
Tiantian Yang(杨甜甜), Tianxiang Yu(俞天翔), Wenhui Zhao(赵文辉), and Dongdong Lin(林冬冬). Chin. Phys. B, 2021, 30(8): 088701.
[4] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[5] Interaction between encapsulated microbubbles: A finite element modelling study
Chen-Liang Cai(蔡晨亮), Jie Yu(于洁), Juan Tu(屠娟), Xia-Sheng Guo(郭霞生), Pin-Tong Huang(黄品同), Dong Zhang(章东). Chin. Phys. B, 2018, 27(8): 084302.
[6] Luminescent properties of thermally activated delayed fluorescence molecule with intramolecular π-π interaction betweendonor and acceptor
Lei Cai(蔡磊), Jianzhong Fan(范建忠), Xiangpeng Kong(孔祥朋), Lili Lin(蔺丽丽), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2017, 26(11): 118503.
[7] Modified Maxwell model for predicting thermal conductivity of nanocomposites considering aggregation
Wen-Kai Zhen(甄文开), Zi-Zhen Lin(蔺子甄), Cong-Liang Huang(黄丛亮). Chin. Phys. B, 2017, 26(11): 114401.
[8] Nonlinear response of ultrasound contrast agent microbubbles: From fundamentals to applications
Xu-Dong Teng(滕旭东), Xia-Sheng Guo(郭霞生), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2016, 25(12): 124308.
[9] Crossover from 2-dimensional to 3-dimensional aggregations of clusters on square lattice substrates
Cheng Yi (程毅), Zhu Yu-Hong (祝宇红), Pan Qi-Fa (潘启发), Yang Bo (杨波), Tao Xiang-Ming (陶向明), Ye Gao-Xiang (叶高翔). Chin. Phys. B, 2015, 24(11): 118105.
[10] Aggregation of fullerene (C60) nanoparticle:A molecular-dynamic study
He Su-Zhen (何素贞), Merlitz Holger, Wu Chen-Xu (吴晨旭). Chin. Phys. B, 2014, 23(4): 048201.
[11] Microstreaming velocity field and shear stress created by an oscillating encapsulated microbubble near a cell membrane
Wang Li (王莉), Tu Juan (屠娟), Guo Xia-Sheng (郭霞生), Xu Di (许迪), Zhang Dong (章东). Chin. Phys. B, 2014, 23(12): 124302.
[12] Evolution of nitrogen structure in N-doped diamond crystal after high pressure and high temperature annealing treatment
Zheng You-Jin (郑友进), Huang Guo-Feng (黄国锋), Li Zhan-Chang (李战厂), Zuo Gui-Hong (左桂鸿). Chin. Phys. B, 2014, 23(11): 118102.
[13] Evolution behavior of catalytically activated replication–decline in a coagulation process
Gao Yan (高艳), Wang Hai-Feng (王海锋), Zhang Ji-Dong (张吉东), Yang Xia (杨霞), Sun Mao-Zhu (孙茂珠), Lin Zhen-Quan (林振权). Chin. Phys. B, 2013, 22(9): 096802.
[14] Bipolar resistive switching based on bis(8-hydroxyquinoline) cadmium complex:Mechanism and non-volatile memory application
Wang Ying (王颖), Yang Ting (杨汀), Xie Ji-Peng (谢吉鹏), Lü Wen-Li (吕文理), Fan Guo-Ying (范国莹), Liu Su (刘肃). Chin. Phys. B, 2013, 22(7): 077308.
[15] Magnetic microbubble:A biomedical platform co-constructed from magnetics and acoustics
Yang Fang (杨芳), Gu Zhu-Xiao (顾竹笑), Jin Xin (金熙), Wang Hao-Yao (王皓瑶), Gu Ning (顾宁). Chin. Phys. B, 2013, 22(10): 104301.
No Suggested Reading articles found!