Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 114301    DOI: 10.1088/1674-1056/20/11/114301
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Acoustic carpet invisibility cloak with two open windows using multilayered homogeneous isotropic material

Ren Chun-Yu(任春雨)a)b), Xiang Zhi-Hai(向志海) a)† , and Cen Zhang-Zhi(岑章志)a)
a Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; b Department of Naval Architecture and Ocean Engineering, Naval University of Engineering, Wuhan 430033, China
Abstract  We present a method for designing an open acoustic cloak that can conceal a perturbation on flat ground and simultaneously meet the requirement of communication and matter interchange between the inside and the outside of the cloak. This cloak can be constructed with a multilayered structure and each layer is an isotropic and homogeneous medium. The design scheme consists of two steps: firstly, we apply a conformal coordinate transformation to obtain a quasi-perfect cloak with heterogeneous isotropic material; then, according to the profile of the material distribution, we degenerate this cloak into a multilayered-homogeneous isotropic cloak, which has two open windows with negligible disturbance on its invisibility performance. This may greatly facilitate the fabrication and enhance the applicability of such a carpet-type cloak.
Keywords:  transformation method      acoustic wave      carpet cloak      multilayered structure  
Received:  23 February 2011      Revised:  06 May 2011      Accepted manuscript online: 
PACS:  43.20.+g (General linear acoustics)  
  43.20.Fn (Scattering of acoustic waves)  

Cite this article: 

Ren Chun-Yu(任春雨), Xiang Zhi-Hai(向志海), and Cen Zhang-Zhi(岑章志) Acoustic carpet invisibility cloak with two open windows using multilayered homogeneous isotropic material 2011 Chin. Phys. B 20 114301

[1] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[2] Leonhardt U 2006 Science 312 1777
[3] Chen H Y, Chan C T and Sheng P 2010 Nature Mater. 9 387
[4] Cummer S A, Popa B I, Schurig D, Smith D R and Pendry J B 2006 Phys. Rev. E 74 036621
[5] Ruan Z, Yan M, Neff C W and Qiu M 2007 Phys. Rev. Lett. 99 113903
[6] Ma H, Qu S, Xu Z and Wang J 2008 Opt. Express 16 15449
[7] Schmiele M, Varma V S, Rockstuhl C and Lederer F 2010 Phys. Rev. A 81 033837
[8] Li J and Pendry J B 2008 Phys. Rev. Lett. 101 203901
[9] Liu R, Ji C, Mock J J, Chin J Y, Cui T J and Smith D R 2009 Science 323 366
[10] Chang Z, Zhou X, Hu J, et al. 2010 Opt. Express 18 6089
[11] Ma H, Qu S, Xu Z and Wang J 2009 Appl. Phys. Lett. 94 103501
[12] Ako T, Yan M and Qiu M 2010 Opt. Express 18 27060
[13] Zhu X, Liang B, Kan W, et al. 2011 Phys. Rev. Lett. 106 014301
[14] Cummer S A and Schurig D 2007 New J. Phys. 9 45
[15] Chen H Y and Chan C T 2007 Appl. Phys. Lett. 91 183518
[16] Torrent D and Sanchez-Dehesa J 2008 New J. Phys. 10 063015
[17] Hu J, Zhou X M and Hu G K 2009 Comput. Mater. Sci. 46 708
[18] Ma H, Qu S B, Xu Z and Wang J F 2009 Chin. Phys. B 18 1123
[19] Norris A N 2009 J. Acoust. Soc. Am 125 839
[20] Cheng Y, Yang F, Xu J Y and Liu X J 2008 Appl. Phys. Lett. 92 151913
[21] Cheng Y and Liu X J 2009 Appl. Phys. A 94 25
[22] Cheng Y and Liu X J 2008 Appl. Phys. Lett. 93 071903
[23] Cheng Y and Liu X J 2008 J. Appl. Phys. 104 104911
[24] Cheng Y and Liu X J 2009 Chin. Phys. Lett. 26 014301
[25] Chen H Y, Yang T, Luo X D and Ma H R 2008 Chin. Phys. Lett. 25 3696
[26] Greenleaf A, Kurylev Y, Lassas M and Uhlmann G 2008 New J. Phys. 10 115024
[27] Farhat M, Guenneau S, Enoch S, Movchan A B, Zolla F and Nicolet N 2008 New J. Phys. 10 115030
[28] Urzhumov Y, Ghezzo F, Hunt J and Smith D R 2010 New J. Phys. 12 073014
[29] Ren C Y, Xiang Z H and Cen Z Z 2010 Appl. Phys. Lett. 97 044101
[30] Rahm M, Cummer S A, Schurig D, Pendry J B and Smith D R 2008 Phys. Rev. Lett. 100 063903
[31] Mathews J H and Howell R W 2006 Complex Analysis for Mathematics and Engineering (Sudbury, MA: Jones & Bartlett)
[32] Allemang R J and Brown D L 1982 Proceedings of the 1st International Modal Analysis Conference Society for Experimental Mechanics, Orlando
[1] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[2] Influence of the anisotropy on the magneto-acoustic response of magnetic surface acoustic wave resonators
Yawei Lu(鲁亚巍), Wenbin Hu(胡文彬), Wan Liu(刘婉), Feiming Bai(白飞明). Chin. Phys. B, 2020, 29(6): 067504.
[3] Oblique collisional effects of dust acoustic waves in unmagnetized dusty plasma
M S Alam, M R Talukder. Chin. Phys. B, 2020, 29(6): 065202.
[4] The (3+1)-dimensional generalized mKdV-ZK equation for ion-acoustic waves in quantum plasmas as well as its non-resonant multiwave solution
Xiang-Wen Cheng(程香雯), Zong-Guo Zhang(张宗国), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2020, 29(12): 124501.
[5] Fabrication and characterization of one-port surface acoustic wave resonators on semi-insulating GaN substrates
Xue Ji(吉雪), Wen-Xiu Dong(董文秀), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), Ke Xu(徐科). Chin. Phys. B, 2019, 28(6): 067701.
[6] Nondestructive determination of film thickness with laser-induced surface acoustic waves
Xiao Xia(肖夏), Kong Tao(孔涛), Qi Hai Yang(戚海洋), Qing Hui Quan(秦慧全). Chin. Phys. B, 2018, 27(9): 096802.
[7] Upstream ion wave excitation in an ion-beam-plasma system
Kai-Yang Yi(弋开阳), Jin-Xiu Ma(马锦秀), Zi-An Wei(卫子安), Zheng-Yuan Li(李政元). Chin. Phys. B, 2018, 27(5): 055201.
[8] Nonlinear ion-acoustic solitary waves in an electron-positron-ion plasma with relativistic positron beam
Ridip Sarma, Amar P Misra, Nirab C Adhikary. Chin. Phys. B, 2018, 27(10): 105207.
[9] Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method
Yan Wang(王艳), Ying-Cai Xie(谢英才), Shu-Yi Zhang(张淑仪), Xiao-Dong Lan(兰晓东). Chin. Phys. B, 2017, 26(8): 087703.
[10] Ultra-broadband asymmetric acoustic transmission with single transmitted beam
Ding Jia(贾鼎), Hong-xiang Sun(孙宏祥), Shou-qi Yuan(袁寿其), Yong Ge(葛勇). Chin. Phys. B, 2017, 26(2): 024302.
[11] Three-dimensional parabolic equation model for seismo-acoustic propagation:Theoretical development and preliminary numerical implementation
Jun Tang(唐骏), Sheng-Chun Piao(朴胜春), Hai-Gang Zhang(张海刚). Chin. Phys. B, 2017, 26(11): 114301.
[12] Dust acoustic waves in collisional uniform dense magnetoplasma
Jian-Rong Yang(杨建荣), Ting Xu(徐婷), Jie-Jian Mao(毛杰键), Ping Liu(刘萍), Xi-Zhong Liu(刘希忠). Chin. Phys. B, 2017, 26(1): 015202.
[13] Topological charge pump by surface acoustic waves
Yi Zheng(郑一), Shi-Ping Feng(冯世平), Shi-Jie Yang(杨师杰). Chin. Phys. B, 2016, 25(6): 067301.
[14] The bound state solution for the Morse potential with a localized mass profile
S Miraboutalebi. Chin. Phys. B, 2016, 25(10): 100301.
[15] Properties of sound attenuation around a two-dimensional underwater vehicle with a large cavitation number
Ye Peng-Cheng (叶鹏程), Pan Guang (潘光). Chin. Phys. B, 2015, 24(6): 066401.
No Suggested Reading articles found!