Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 075101    DOI: 10.1088/1674-1056/25/7/075101

Recrystallization of freezable bound water in aqueous solutions of medium concentrations

Lishan Zhao(赵立山)1,2, Liqing Pan(潘礼庆)1, Ailing Ji(纪爱玲)2, Zexian Cao(曹则贤)2, Qiang Wang(王强)2
1 Department of Physics, University of Science and Technology Beijing, Beijing 100083, China;
2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

For aqueous solutions with freezable bound water, vitrification and recrystallization are mingled, which brings difficulty to application and misleads the interpretation of relevant experiments. Here, we report a quantification scheme for the freezable bound water based on the water-content dependence of glass transition temperature, by which also the concentration range for the solutions that may undergo recrystallization finds a clear definition. Furthermore, we find that depending on the amount of the freezable bound water, different temperature protocols should be devised to achieve a complete recrystallization. Our results may be helpful for understanding the dynamics of supercooled aqueous solutions and for improving their manipulation in various industries.

Keywords:  recrystallization      aqueous solution      glass transition      freezable bound water  
Received:  21 February 2016      Revised:  28 March 2016      Accepted manuscript online: 
PACS:  51.30.+i (Thermodynamic properties, equations of state)  
  64.70.D- (Solid-liquid transitions)  
  65.20.-w (Thermal properties of liquids)  

Project supported by the Knowledge Innovation Project of Chinese Academy of Sciences on Water Science Research (Grant No. KJZD-EW-M03) and the National Natural Science Foundation of China (Grant Nos. 11474325 and 11290161).

Corresponding Authors:  Qiang Wang     E-mail:

Cite this article: 

Lishan Zhao(赵立山), Liqing Pan(潘礼庆), Ailing Ji(纪爱玲), Zexian Cao(曹则贤), Qiang Wang(王强) Recrystallization of freezable bound water in aqueous solutions of medium concentrations 2016 Chin. Phys. B 25 075101

[1] Baik M Y, Kim K J, Cheon K C, Ha Y C and Kim W S 1997 J. Agr. Food Chem. 45 4242
[2] Hagiwara T, Mao J, Suzuki T and Takai R 2005 Food Sci. Technol. Res. 11 407
[3] Regand A and Goff H D 2003 Food Hydrocolloid. 17 95
[4] Ronda F and Roos Y H 2008 Carbohydr. Res. 343 903
[5] Wunderlich B 1958 J. Chem. Phys. 29 1395
[6] Qiu Z B, Ikehara T and Nishi T 2003 Polymer 44 5429
[7] Lizundia E, Petisco S and Sarasua J R 2013 J. Mech. Behav. Biomed. Mater. 17 242
[8] Guan Y, Liu G M, Ding G Q, Yang T Y, Müller A J and Wang D J 2015 Macromolecules 48 2526
[9] Lin X H, Johnson W L and Rhim W K 1997 Mater. Trans. Jim 38 473
[10] Wang W H, Dong C and Shek C H 2004 Mater. Sci. Eng. R 44 45
[11] Peker A and Johnson W L 1993 Appl. Phys. Lett. 63 2342
[12] Liu Y J and Chang I T H 2002 Mater. Sci. Eng. A 325 25
[13] Ablett S, Izzard M J and Lillford P J 1992 J. Chem. Soc. Faraday Trans. 88 789
[14] Hey J M and MacFarlane D R 1998 Cryobiology 37 119
[15] Wang H Y, Lu S S and Lun Z R 2009 Cryobiology 58 115
[16] Gemmei-Ide M, Motonaga T, Kasai R and Kitano H 2013 J. Phys. Chem. B 117 2188
[17] Chaddah P, Kumar K and Banerjee A 2008 Phys. Rev. B 77 100402
[18] Wellen R M R and Rabello M S 2005 J. Mater. Sci. 40 6099
[19] Li Y and Han C Y 2012 Ind. Eng. Chem. Res. 51 15927
[20] Hu C L, Chen S Y, Zhang W H, Xie F Y, Chen J and Chen X D 2015 Soft Matter 11 6866
[21] Hey J M and MacFarlane D R 1996 Cryobiology 33 205
[22] Boutron P and Kaufmann A 1979 Cryobiology 16 83
[23] Zhang T Z, Li T, Nies E, Berghmans H and Ge L Q 2009 Polymer 50 1206
[24] Grisedale L C, Belton P S, Jamieson M J, Barker S A and Craig D Q 2012 Int. J. Pharm. 422 220
[25] Kishi A, Tanaka M and Mochizuki A 2009 J. Appl. Polym. Sci. 111 476
[26] Miwa Y, Ishida H, Tanaka M and Mochizuki A 2010 J. Biomater. Sci., Polym. Ed. 21 1911
[27] Gemmei-Ide M and Kitano H 2008 J. Phys. Chem. B 112 12863
[28] Gemmei-Ide M, Ohya A and Kitano H 2012 J. Phys. Chem. B 116 1850
[29] Hatakeyama T, Tanaka M and Hatakeyama H 2010 J. Biomater. Sci. Polym. Ed. 21 1865
[30] Tanaka M, Hayashi T and Morita S 2013 Polym. J. 45 701
[31] Slade L and Levine H 1991 Crit. Rev. Food Sci. 30 115
[32] Corti H R, Angell C A, Auffret T, Levine H, Buera M P, Reid D S, Roos Y H and Slade L 2010 Pure Appl. Chem. 82 1065
[33] Zhao L S, Cao Z X and Wang Q 2015 Sci. Rep. 5 15714
[34] Zhao L S, Pan L Q, Cao Z X and Wang Q 2016 Chem. Phys. Lett. 647 170
[1] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[2] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[3] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[4] Comparison of cavities and extended defects formed in helium-implanted 6H-SiC at room temperature and 750 ℃
Qing Liao(廖庆), Bingsheng Li(李炳生), Long Kang(康龙), Xiaogang Li(李小刚). Chin. Phys. B, 2020, 29(7): 076103.
[5] Thermodynamic and structural properties of polystyrene/C60 composites: A molecular dynamics study
Junsheng Yang(杨俊升), Ziliang Zhu(朱子亮), Duohui Huang(黄多辉), Qilong Cao(曹启龙). Chin. Phys. B, 2020, 29(2): 023104.
[6] Characterization of swift heavy ion tracks in MoS2 by transmission electron microscopy
Li-Jun Xu(徐丽君), Peng-Fei Zhai(翟鹏飞)†, Sheng-Xia Zhang(张胜霞), Jian Zeng(曾健), Pei-Pei Hu(胡培培), Zong-Zhen Li(李宗臻), Li Liu(刘丽), You-Mei Sun(孙友梅), and Jie Liu(刘杰)‡. Chin. Phys. B, 2020, 29(10): 106103.
[7] Structural transitions in NaNH2 via recrystallization under high pressure
Yanping Huang(黄艳萍), Xiaoli Haung(黄晓丽), Xin Wang(王鑫), Wenting Zhang(张文亭), Di Zhou(周迪), Qiang Zhou(周强), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2019, 28(9): 096402.
[8] The universal characteristic water content of aqueous solutions
Xiao Huang(黄晓), Ze-Xian Cao(曹则贤), Qiang Wang(王强). Chin. Phys. B, 2019, 28(6): 065101.
[9] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[10] Study of glass transition kinetics of As2S3 and As2Se3 by ultrafast differential scanning calorimetry
Fan Zhang(张凡), Yimin Chen(陈益敏), Rongping Wang(王荣平), Xiang Shen(沈祥), Junqiang Wang(王军强), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2019, 28(4): 047802.
[11] Full filling of mesoporous carbon nanotubes by aqueous solution at room temperature
Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2019, 28(3): 036801.
[12] Accurate quantification of hydration number for polyethylene glycol molecules
Wei Guo(郭伟), Lishan Zhao(赵立山), Xin Gao(高欣), Zexian Cao(曹则贤), Qiang Wang(王强). Chin. Phys. B, 2018, 27(5): 055101.
[13] Direct characterization of boron segregation at random and twin grain boundaries
Xiang-Long Li(李向龙), Ping Wu(吴平), Rui-Jie Yang(杨锐杰), Shi-Ping Zhang(张师平), Sen Chen(陈森), Xue-Min Wang(王学敏), Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2017, 26(8): 086802.
[14] Hybrid temperature effect on a quartz crystal microbalance resonator in aqueous solutions
Qiang Li(李强), Yu Gu(谷宇), Bin Xie(谢斌). Chin. Phys. B, 2017, 26(6): 067704.
[15] Transport coefficients and mechanical response in hard-disk colloidal suspensions
Bo-Kai Zhang(张博凯), Jian Li(李健), Kang Chen(陈康), Wen-De Tian(田文得), Yu-Qiang Ma(马余强). Chin. Phys. B, 2016, 25(11): 116101.
No Suggested Reading articles found!