Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 104205    DOI: 10.1088/1674-1056/20/10/104205
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Simulation of continuous terahertz wave transient state thermal effects on static water

Lü Ying-Jin(吕英进)a)b), Xu De-Gang(徐德刚) a)b)†, Liu Peng-Xiang(刘鹏翔)a)b), Lü Da(吕达)a)b), Wen Qi-Ye(文岐业)c), Zhang Huai-Wu(张怀武)c), and Yao Jian-Quan(姚建铨)a)b)
a College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, Chinab Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin 300072, China; c State Key Laboratory of Electronic Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  We report a numerical simulation of continuous terahertz beam induced transient thermal effects on static water. The terahertz wave used in this paper has a Gaussian beam profile. Based on the transient heat conduction equation, the finite element method (FEM) is utilized to calculate the temperature distribution. The simulation results show the dynamic process of temperature change in water during terahertz irradiation. After about 300 s, the temperature reaches a steady state with a water layer thickness of 5 mm and a beam radius of 0.25 mm. The highest temperature increase is 7 K/mW approximately. This work motivates further study on the interaction between terahertz wave and bio-tissue, which has a high water content.
Keywords:  terahertz      transient thermal effect      finite element method  
Received:  31 March 2011      Revised:  18 April 2011      Accepted manuscript online: 
PACS:  42.62.-b (Laser applications)  
  02.70.Dh (Finite-element and Galerkin methods)  
  44.10.+i (Heat conduction)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2007CB310403 and 2007CB310407) and the National Natural Science Foundation of China (Grant No. 60801017).

Cite this article: 

Lü Ying-Jin(吕英进), Xu De-Gang(徐德刚), Liu Peng-Xiang(刘鹏翔), Lü Da(吕达), Wen Qi-Ye(文岐业), Zhang Huai-Wu(张怀武), and Yao Jian-Quan(姚建铨) Simulation of continuous terahertz wave transient state thermal effects on static water 2011 Chin. Phys. B 20 104205

[1] Hu B B and Nuss M C 1995 Opt. Lett. 20 1716
[2] Pickwell E, Fitzgerald A J, Taday P F, Cole B E, Pye R J, Ha T, Pepper M and Wallace V P 2004 Proceedings of the Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics, September 27-October 1, 2004, Karlsruhe, Germany, p. 821
[3] Kawase K, Ogawa Y and Watanabe Y 2003 Opt. Express 11 2549
[4] Chen J, Chen Y Q, Zhao H W, Bastiaans G J and Zhang X C 2007 Opt. Express 15 12060
[5] Piesiewicz R, Kleine-Ostmann T, Krumbholz N, Mittleman D, Koch M, Schoebel J and Kurner T 2007 IEEE Antennas and Propagation Magazine 49 24
[6] Wang Y Y, Minamide H, Tang M, Notake T and Ito H 2010 Opt. Express 18 15504
[7] Bondar N P, Kovalenko I L, Avgustinovich D F, Khamoyan A G and Kudryavtseva N N 2008 Bull. Exp. Biol. Med. 145 401
[8] Alexandrov B S, Gelev V, Bishop A R, Usheva A and Rasmussen K O 2010 Phys. Lett. A 374 1214
[9] Olshevskaya J S, Ratushnyak A S, Petrov A K, Kozlov A S and Zapara T A 2008 Proceedings of the IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering, July 21-25, 2008, Novosibirsk, Russia, p. 210
[10] Kristensen T T L, Withayachumnankul W, Jepsen P U and Abbott D 2010 Opt. Express 18 4727
[11] Frauchiger J, Albers P and Weber H P 1992 IEEE Journal of Quantum Electronics 28 1046
[12] Ellison W J 2007 J. Phys. Chem. Ref. Data 36 1
[13] Ramires M L V, Nieto de Castro C A, Nagasaka Y, Nagashima A, Assael M J and Wakeham W A 1995 J. Phys. Chem. Ref. Data 24 1377
[14] Xu J, Plaxco K W and Allen S J 2006 J. Chem. Phys. 124 1
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[10] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[11] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[12] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[13] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[14] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[15] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
No Suggested Reading articles found!