Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 100505    DOI: 10.1088/1674-1056/20/10/100505
GENERAL Prev   Next  

Comparison between two different sliding mode controllers for a fractional-order unified chaotic system

Qi Dong-Lian(齐冬莲), Wang Qiao(王乔), and Yang Jie(杨捷)
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Abstract  Two different sliding mode controllers for a fractional order unified chaotic system are presented. The controller for an integer-order unified chaotic system is substituted directly into the fractional-order counterpart system, and the fractional-order system can be made asymptotically stable by this controller. By proving the existence of a sliding manifold containing fractional integral, the controller for a fractional-order system is obtained, which can stabilize it. A comparison between these different methods shows that the performance of a sliding mode controller with a fractional integral is more robust than the other for controlling a fractional order unified chaotic system.
Keywords:  unified chaotic system      fractional-order system      sliding mode control  
Received:  02 April 2011      Revised:  09 June 2011      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  87.19.lr (Control theory and feedback)  
  05.45.-a (Nonlinear dynamics and chaos)  
  74.40.De (Noise and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60702023) and the Natural Science Foundation of Zhejiang Province, China (Grant No. R1110443).

Cite this article: 

Qi Dong-Lian(齐冬莲), Wang Qiao(王乔), and Yang Jie(杨捷) Comparison between two different sliding mode controllers for a fractional-order unified chaotic system 2011 Chin. Phys. B 20 100505

[1] Inaba N, Nishi Y and Endo T 2011 Physica D 240 903
[2] Chen S H and Kong C C 2009 Chin. Phys. B 18 91
[3] Schuster H G 1984 Deterministic Chaos: An Introduction (Weinheim: Physik-Verlag)
[4] Li C and Chen G 2004 Physica A 341 55
[5] Li C P, Deng W H and Xu D 2006 Physica A 360 171
[6] Sheu L J, Chen H K, Chen J H and Tam L M 2008 Chaos, Solitons and Fractals 36 98
[7] Wen X J and Lu J G 2008 IEEE Trans. Circ. Syst. 55 1178
[8] Tavazoei M S and Haeri M 2007 Phys. Lett. A 354 305
[9] Yang J and Qi D L 2010 Chin. Phys. B 19 020508
[10] Zheng Y G, Nian Y B and Wang D J 2010 Phys. Lett. A 375 125
[11] Matouk A E 2009 Phys. Lett. A 373 2166
[12] Ahmad W M and Harb A M 2003 Chaos, Solitons and Fractals 18 693
[13] Jiang X F and Han Q L 2008 Automatica 44 2680
[14] Lü J H and Chen G R 2002 Int. J. Bifur. Chaos 12 659
[15] Qi D L and Yang J 2010 Chin. Phys. B 19 100506
[16] Wu X J, Li J and Chen G R 2009 J. Franklin Institute 345 392
[17] Diethelm K, Ford N J and Freed A D 2002 Nonlinear Dyn. 29 3
[18] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press)
[19] Ahmed E, El-Sayed A M A and El-Saka H A A 2007 J. Math. Appl. 325 542
[20] Cheng Y C and Hwang C 2006 Automacica 42 825
[21] Tavazoei M S and Haeri M 2009 Math. Comput. Simul. 79 1566
[22] Li M 2010 Chin. Phys. B 19 100504
[23] Pisano A, Rapaic M R, Jelicic Z D and Usai E 2010 American Control Conference USA, pp. 6680-6685
[24] Hilfer R 2001 Applications of Fractal Calculus in Physics (New Jersey: World Scientific)
[25] N'Doye I, Zasadzinski M, Radhy N E and Bouaziz A 2009 17th Mediterranean Conference on Control and Automation Makedonia Palace, Greece pp. 324-329
[26] Podlubny I 1999 IEEE Trans. Automatic Control 44 208
[1] Fixed time integral sliding mode controller and its application to the suppression of chaotic oscillation in power system
Jiang-Bin Wang(王江彬), Chong-Xin Liu(刘崇新), Yan Wang(王琰), Guang-Chao Zheng(郑广超). Chin. Phys. B, 2018, 27(7): 070503.
[2] A new four-dimensional chaotic system with first Lyapunov exponent of about 22, hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control
Jay Prakash Singh, Binoy Krishna Roy, Zhouchao Wei(魏周超). Chin. Phys. B, 2018, 27(4): 040503.
[3] Finite-time robust control of uncertain fractional-order Hopfield neural networks via sliding mode control
Yangui Xi(喜彦贵), Yongguang Yu(于永光), Shuo Zhang(张硕), Xudong Hai(海旭东). Chin. Phys. B, 2018, 27(1): 010202.
[4] Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system
Ningning Yang(杨宁宁), Yuchao Han(韩宇超), Chaojun Wu(吴朝俊), Rong Jia(贾嵘), Chongxin Liu(刘崇新). Chin. Phys. B, 2017, 26(8): 080503.
[5] Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme
Alireza Khanzadeh, Mahdi Pourgholi. Chin. Phys. B, 2016, 25(8): 080501.
[6] Controlling chaos based on a novel intelligent integral terminal sliding mode control in a rod-type plasma torch
Safa Khari, Zahra Rahmani, Behrooz Rezaie. Chin. Phys. B, 2016, 25(5): 050201.
[7] Fractional-order systems without equilibria: The first example of hyperchaos and its application to synchronization
Donato Cafagna, Giuseppe Grassi. Chin. Phys. B, 2015, 24(8): 080502.
[8] Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance
Zhou Ke (周柯), Wang Zhi-Hui (王智慧), Gao Li-Ke (高立克), Sun Yue (孙跃), Ma Tie-Dong (马铁东). Chin. Phys. B, 2015, 24(3): 030504.
[9] Full-order sliding mode control of uncertain chaos in a permanent magnet synchronous motor based on a fuzzy extended state observer
Chen Qiang (陈强), Nan Yu-Rong (南余荣), Zheng Heng-Huo (郑恒火), Ren Xue-Mei (任雪梅). Chin. Phys. B, 2015, 24(11): 110504.
[10] Finite-time sliding mode synchronization of chaotic systems
Ni Jun-Kang (倪骏康), Liu Chong-Xin (刘崇新), Liu Kai (刘凯), Liu Ling (刘凌). Chin. Phys. B, 2014, 23(10): 100504.
[11] Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control
Wang Li-Ming (王立明), Tang Yong-Guang (唐永光), Chai Yong-Quan (柴永泉), Wu Feng (吴峰). Chin. Phys. B, 2014, 23(10): 100501.
[12] Synchronization of uncertain fractional-order chaotic systems with disturbance based on fractional terminal sliding mode controller
Wang Dong-Feng (王东风), Zhang Jin-Ying (张金营), Wang Xiao-Yan (王晓燕). Chin. Phys. B, 2013, 22(4): 040507.
[13] Chaos synchronization of a chain network based on a sliding mode control
Liu Shuang (柳爽), Chen Li-Qun (陈立群). Chin. Phys. B, 2013, 22(10): 100506.
[14] Adaptive projective synchronization of different chaotic systems with nonlinearity inputs
Niu Yu-Jun(牛玉军), Wang Xing-Yuan(王兴元), and Pei Bing-Nan(裴炳南) . Chin. Phys. B, 2012, 21(3): 030503.
[15] Synchronization between a novel class of fractional-order and integer-order chaotic systems via sliding mode controller
Chen Di-Yi (陈帝伊), Zhang Run-Fan (张润凡), Ma Xiao-Yi (马孝义), Wang Juan (王娟). Chin. Phys. B, 2012, 21(12): 120507.
No Suggested Reading articles found!