Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 100504    DOI: 10.1088/1674-1056/20/10/100504
GENERAL Prev   Next  

Predicting the subcellular location of apoptosis proteins based on recurrence quantification analysis and the Hilbert–Huang transform

Han Guo-Sheng(韩国胜)a), Yu Zu-Guo(喻祖国)a)b), and Anh Vob)
a School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China; b Discipline of Mathematical Science, Faculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
Abstract  Apoptosis proteins play an important role in the development and homeostasis of an organism. The elucidation of the subcellular locations and functions of these proteins is helpful for understanding the mechanism of programmed cell death. In this paper, the recurrent quantification analysis, Hilbert-Huang transform methods, the maximum relevance and minimum redundancy method and support vector machine are used to predict the subcellular location of apoptosis proteins. The validation of the jackknife test suggests that the proposed method can improve the prediction accuracy of the subcellular location of apoptosis proteins and its application may be promising in other fields.
Keywords:  apoptosis proteins      subcellular location      recurrent quantification analysis      Hilbert-Huang transform  
Received:  02 June 2011      Revised:  15 June 2011      Accepted manuscript online: 
PACS:  05.45.Df (Fractals)  
  64.60.al (Fractal and multifractal systems)  
  87.15.Qt (Sequence analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11071282), the Chinese Program for New Century Excellent Talents in University (Grant No. NCET-08-06867), the Natural Science Foundation of Hunan Province of China (Grant No. 10JJ7001), the Lotus Scholars Program of Hunan Province of China, the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province of China, the Australian Research Council (Grant No. DP0559807), and the Postgraduate Research and Innovation Project of Hunan Province of China (Grant No. CX2010B243).

Cite this article: 

Han Guo-Sheng(韩国胜), Yu Zu-Guo(喻祖国), and Anh Vo Predicting the subcellular location of apoptosis proteins based on recurrence quantification analysis and the Hilbert–Huang transform 2011 Chin. Phys. B 20 100504

[1] Jensen L J, Gupta R, Blom N, Devos D, Tamames J, Kesmir C, Nielsen H, Staerfeldt H H, Rapacki K, Workman C, Andersen C A F, Knudsen S, Krogh A, Valencia A and Brunak S 2002 J. Mol. Biol. 319 1257
[2] Yu Z G, Xiao Q J, Shi L, Yu J W and Anh V 2010 Chin. Phys. B 19 068701
[3] Zhu S M, Yu Z G and Anh V 2011 Chin. Phys. B 20 010505
[4] Chou K C and Cai Y D 2004 Biochem. Biophys. Res. Commun. 320 1236
[5] Reinhardt A and Hubbard T 1998 Nucleic Acids Res. 26 2230
[6] Hua S J and Sun Z R 2001 Bioinformatics 17 721
[7] Liu T G, Zheng X Q and Wang J 2010 Amino Acids 38 721
[8] Huang Y and Li Y D 2001 Bioinformatics 20 21
[9] Briesemeister S, Rahnenführer J and Kohlbacher O 2010 Bioinformatics 26 1232
[10] Xiao X, Shao S H, Ding Y S, Huang Z D and Chou K C 2006 Amino Acids 30 49
[11] Chou K C and Shen H B 2006 J. Cell Biochem. 99 517
[12] Yuan Z 1999 FEBS Lett. 451 23
[13] Xu Q, Hu D H, Xue H, Yu W C and Yang Q 2009 BMC Bioinformatics (Suppl. 1) 10 S47
[14] Tung T Q and Lee D 2009 BMC Bioinformatics (Suppl. 1) 10 S43
[15] Höglund A, Dönnes P, Blum T, Adolph H W and Kohlbacher O 2006 Bioinformatics 22 1158
[16] Chou K C and Shen H B 2010 PLoS ONE 5 e9931
[17] Jacobson M D, Weil M and Raff M C 1997 Cell 88 347
[18] Kerr J F R, Wyllie A H and Currie A R 1972 Brit. J. Cancer 26 239
[19] Adams J M and Cory S 1998 Science 281 1322
[20] Evan G and Littlewood T 1998 Science 281 1317
[21] Reed J C and Paternostro G 1999 Proc. Natl. Acad. Sci. USA 96 7614
[22] Raff M 1998 Nature 396 119
[23] Schulz J B, Weller M and Moskowitz M A 1999 Ann. Neurol. 45 421
[24] Suzuki M, Youle R J and Tjandra N 2000 Cell 103 645
[25] Zhou G P and Doctor K 2003 Proteins Struct. Funct. Genet. 50 44
[26] Bulashevska A and Eils R 2006 BMC Bioinformatics 7 298
[27] Zhang Z H, Wang Z H, Zhang Z R and Wang Y X 2006 FEBS Lett. 580 6169
[28] Ding Y S and Zhang T L 2008 Pattern Recogn. Lett. 29 1887
[29] Chen Y L and Li Q Z 2007 J. Theor. Biol. 245 775
[30] Chen Y L and Li Q Z 2007 J. Theor. Biol. 248 377
[31] Zhang L, Liao B, Li D C and Zhu W 2009 J. Theor. Biol. 259 361
[32] Gu Q, Ding Y S, Jiang X Y and Zhang T L 2010 Amino Acids 38 975
[33] Yu Z G, Anh V, Lau K S and Zhou L Q 2006 Phys. Rev. E 73 031920
[34] Selz K A, Mandell A J and Shlesinger M F 1998 Biophys. J. 75 2332
[35] Bordo D and Argos P 1991 J. Mol. Biol. 217 721
[36] Webber J C L and Zbilut J P 1994 J. Appl. Physiol. 76 965
[37] Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q A, Yen N C, Tung C C and Liu H H 1998 Proc. R. Soc. 454 903
[38] Peng H, Long F and Ding C 2005 IEEE Tran. Pattern Anal. 27 1226
[39] Chou K C and Shen H B 2007 Anal. Biochem. 370 1
[40] Chou K C 1995 Proteins Struct. Funct. Genet. 21 319
[41] Nakashima H and Nishikawa K 1994 J. Mol. Biol. 238 54
[42] Cedano J, Aloy P, Perez-Pons J A and Querol E 1997 J. Mol. Biol. 266 594
[43] Eckmann J P, Kamphorst S O and Ruelle D 1987 Europhys. Lett. 4 973
[44] Riley M A and van Orden G C 2005, Retrieved March 1, 2005, online available from website http:// www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp
[45] Giuliani A, Benigni R, Zbilut J P, Webber J C L, Sirabella P and Colosimo A 2002 Chem. Rev. 102 1471
[46] Marwan N, Romano M C, Thiel M and Kurths J 2007 Phys. Rep. 438 237
[47] Yang J Y, Peng Z L, Yu Z G, Zhang R J, Anh V and Wang D S 2009 J. Theor. Biol. 257 618
[48] Giuliani A, Sirabella P, Benigni R and Colosimo A 2000 Protein Eng. 13 671
[49] Manetti C, Ceruso M A, Giuliani A, Webber J C L and Zbilut J P 1999 Phys. Rev. E 59 992
[50] Webber J C L, Giuliani A, Zbilut J P and Colosimo A 2001 Proteins 44 292
[51] Zhou Y, Yu Z G and Anh V 2007 Phys. Lett. A 368 314
[52] Yang J Y, Peng Z L and Chen X 2010 BMC Bioinformatics (Suppl. 1) 11 S9
[53] Cao L 1997 Physica D 110 43
[54] Huang N E, Wu M L C, Long S R, Shen S S P, Qu W D and Gloersen P and Fan K L 2003 Proc. R. Soc. 459 2317
[55] Yu Z G, Anh V, Wang Y, Mao D and Wanliss J 2010 J. Geophys. Res. 115 A10219
[56] Shi F, Chen Q J and Li N N 2008 J. Biomed. Sci. Eng. 1 59
[57] Huang T, Shi X H, Wang P, He Z S, Feng K Y, Hu L L, Kong X Y, Li Y X, Cai Y D and Chou K C 2010 PLoS ONE 5 e10972
[58] Vapnik V N 1995 The Nature of Statistical Learning Theory (Berline: Springer)
[59] Chang C C and Lin C J LIBSVM: a Library for Support Vector Machines Software available online at http://www.csie.ntu.edu.tw/cjlin/libsvm
[60] Shi J Y, Zhang S W, Pan Q, Cheng Y M and Xie J 2007 Amino Acids 33 69
[61] Huang J, Shi F and Zhou H B 2005 China J. Bioinformatics 3 121
[1] Multifractal analysis of the software evolution in software networks
Meili Liu(刘美丽), Xiaogang Qi(齐小刚), and Hao Pan(潘浩). Chin. Phys. B, 2022, 31(3): 030501.
[2] Fractal sorting vector-based least significant bit chaotic permutation for image encryption
Yong-Jin Xian(咸永锦), Xing-Yuan Wang(王兴元), Ying-Qian Zhang(张盈谦), Xiao-Yu Wang(王晓雨), and Xiao-Hui Du(杜晓慧). Chin. Phys. B, 2021, 30(6): 060508.
[3] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[4] Analysis of secondary electron emission using the fractal method
Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光辉), Rui Wang(王瑞), Na Zhang(张娜), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2021, 30(1): 017901.
[5] Image encryption technique based on new two-dimensional fractional-order discrete chaotic map and Menezes-Vanstone elliptic curve cryptosystem
Zeyu Liu(刘泽宇), Tiecheng Xia(夏铁成), Jinbo Wang(王金波). Chin. Phys. B, 2018, 27(3): 030502.
[6] Detection of meso-micro scale surface features based on microcanonical multifractal formalism
Yuanyuan Yang(杨媛媛), Wei Chen(陈伟), Tao Xie(谢涛), William Perrie. Chin. Phys. B, 2018, 27(1): 010502.
[7] Multifractal modeling of the production of concentrated sugar syrup crystal
Sheng Bi(闭胜), Jianbo Gao(高剑波). Chin. Phys. B, 2016, 25(7): 070502.
[8] Exploring the relationship between fractal features and bacterial essential genes
Yong-Ming Yu(余永明), Li-Cai Yang(杨立才), Qian Zhou(周茜), Lu-Lu Zhao(赵璐璐), Zhi-Ping Liu(刘治平). Chin. Phys. B, 2016, 25(6): 060503.
[9] Multifractal analysis of white matter structural changes on 3D magnetic resonance imaging between normal aging and early Alzheimer's disease
Ni Huang-Jing (倪黄晶), Zhou Lu-Ping (周泸萍), Zeng Peng (曾彭), Huang Xiao-Lin (黄晓林), Liu Hong-Xing (刘红星), Ning Xin-Bao (宁新宝), the Alzheimer's Disease Neuroimaging Initiative. Chin. Phys. B, 2015, 24(7): 070502.
[10] Directional region control of the thermalfractal diffusion of a space body
Qiao Wei (乔威), Sun Jie (孙洁), Liu Shu-Tang (刘树堂). Chin. Phys. B, 2015, 24(5): 050504.
[11] Space–time fractional KdV–Burgers equation for dust acoustic shock waves in dusty plasma with non-thermal ions
Emad K. El-Shewy, Abeer A. Mahmoud, Ashraf M. Tawfik, Essam M. Abulwafa, Ahmed Elgarayhi. Chin. Phys. B, 2014, 23(7): 070505.
[12] Row-column visibility graph approach to two-dimensional landscapes
Xiao Qin (肖琴), Pan Xue (潘雪), Li Xin-Li (李信利), Mutua Stephen, Yang Hui-Jie (杨会杰), Jiang Yan (蒋艳), Wang Jian-Yong (王建勇), Zhang Qing-Jun (张庆军). Chin. Phys. B, 2014, 23(7): 078904.
[13] Adaptive step-size modified fractional least mean square algorithm for chaotic time series prediction
Bilal Shoaib, Ijaz Mansoor Qureshi, Shafqatullah, Ihsanulhaq. Chin. Phys. B, 2014, 23(5): 050503.
[14] A fractal approach to low velocity non-Darcy flow in a low permeability porous medium
Cai Jian-Chao (蔡建超). Chin. Phys. B, 2014, 23(4): 044701.
[15] A modified fractional least mean square algorithm for chaotic and nonstationary time series prediction
Bilal Shoaib, Ijaz Mansoor Qureshi, Ihsanulhaq, Shafqatullah. Chin. Phys. B, 2014, 23(3): 030502.
No Suggested Reading articles found!