Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 090601    DOI: 10.1088/1674-1056/19/9/090601
GENERAL Prev   Next  

A super-high resolution frequency standard measuring approach based on phase coincidence characteristics between signals

Li Zhi-Qi(李智奇), Zhou Wei(周渭), Chen Fa-Xi(陈发喜), and Liu Chen-Guang(刘晨光)
Department of Measurement and Instrument, Xidian University, Xi'an 710071, China
Abstract  A method for super high resolution comparison measurement is proposed in this paper with a comparison between the frequency standards of different nominal frequencies, which is based on phase coincidence detection of the two compared signals. It utilizes the regular phase shift characteristics between the signals. The resolution of the measurement approach can reach 10-13/s at 5 MHz, and the self-calibration resolution can achieve 10-14/s in the comparison between 10 MHz and 100 MHz, or even can reach 10-15/s in the comparison between 10 MHz and 190 MHz. This method implies significant progress in the development of the high precision frequency standard comparison technology.
Keywords:  frequency measurement      resolution      phase coincidence      equivalent phase comparison frequency  
Received:  20 November 2009      Revised:  04 March 2010      Accepted manuscript online: 
PACS:  0630F  
  0750  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.60772135 and 10978017), the Open Fund of Key Laboratory of Precision Navigation and Technology, National Time Service Center, Chinese Academy of Sciences (Grant No.2009PNTT10), and the Fundamental Research Funds for the Central Universities, China (Grant No. JY10000905015).

Cite this article: 

Li Zhi-Qi(李智奇), Zhou Wei(周渭), Chen Fa-Xi(陈发喜), and Liu Chen-Guang(刘晨光) A super-high resolution frequency standard measuring approach based on phase coincidence characteristics between signals 2010 Chin. Phys. B 19 090601

[1] Zhou W, Xuan Z Q and Yu J G 1995 Proc. 1995 IEEE Int. Frequency Control Symposium San Francisco, USA, May 31-June 2, 1995, p354
[2] Wang Z H, Wei Z Y, Teng H, Wang P and Zhang J 2003 Acta Phys. Sin. 52 362 (in Chinese)
[3] Howe D A and Allan D W 1981 Proc. 35th Annual Frequency Control Symposium Philadelphia, USA, May 27--29, 1981, p470
[4] Zhou W, Zhou H, Fan W J, Wang H, Qian S X and Jiang W N 2008 Proc. 2008 IEEE Int. Frequency Control Symposium Honolulu, USA, May 19--21, 2008, p468
[5] Du B Q, Zhou W, Dong S F and Zhou H N 2009 Chin. Phys. Lett. 26 070602
[6] Allan D W 1987 IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control 34 647
[7] Zhou W, Zheng S F, Li Z Q, Zhou H and Wang C X 2007 Proc. 2007 IEEE Int. Frequency Control Symposium Geneva, Switzerland, May 29-June 1, p811
[8] Ren H X and Hao Y 2000 Acta Phys. Sin. 49 1683 (in Chinese)
[9] Xin X J 1976 Acta Phys. Sin. 25 10 (in Chinese)
[10] Xin X J 1957 Acta Phys. Sin. 13 500 (in Chinese)
[11] Zhou W and Li Z Q 2009 China Time and Frequency Symposium Chengdu, China Oct. 21--24, 2009, p310 endfootnotesize
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion
Yu-Bing Li(李玉冰), Jian Wang(王建), Chang Su(苏畅), Wei-Jun Lin(林伟军), Xiu-Ming Wang(王秀明), and Yi Luo(骆毅). Chin. Phys. B, 2023, 32(1): 014303.
[3] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[4] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[5] A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector
Jianjin Zhou(周建晋), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lin Zhu(朱林), Jianqing Yang(杨建清), Guian Yang(杨桂安), Yi Zhang(张毅), Baowei Ding(丁宝卫), Bitao Hu(胡碧涛), Zhijia Sun(孙志嘉), Limin Duan(段利敏), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2022, 31(5): 050702.
[6] Switchable instantaneous frequency measurement by optical power monitoring based on DP-QPSK modulator
Yu-Lin Zhu(朱昱琳), Bei-Lei Wu(武蓓蕾), Jing Li(李晶), Mu-Guang Wang(王目光), Shi-Ying Xiao(肖世莹), and Feng-Ping Yan(延凤平). Chin. Phys. B, 2022, 31(4): 044202.
[7] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[8] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[9] Instantaneous frequency measurement using two parallel I/Q modulators based on optical power monitoring
Chuangye Wang(王创业), Tigang Ning(宁提纲), Jing Li(李晶), Li Pei(裴丽), Jingjing Zheng(郑晶晶), and Jingchuan Zhang(张景川). Chin. Phys. B, 2022, 31(1): 010702.
[10] Collective excitations and quantum size effects on the surfaces of Pb(111) films: An experimental study
Yade Wang(王亚德), Zijian Lin(林子荐), Siwei Xue(薛思玮), Jiade Li(李佳德), Yi Li(李毅), Xuetao Zhu(朱学涛), and Jiandong Guo(郭建东). Chin. Phys. B, 2021, 30(7): 077308.
[11] Magnetic-resonance image segmentation based on improved variable weight multi-resolution Markov random field in undecimated complex wavelet domain
Hong Fan(范虹), Yiman Sun(孙一曼), Xiaojuan Zhang(张效娟), Chengcheng Zhang(张程程), Xiangjun Li(李向军), and Yi Wang(王乙). Chin. Phys. B, 2021, 30(7): 078703.
[12] Super-resolution imaging of low-contrast periodic nanoparticle arrays by microsphere-assisted microscopy
Qin-Fang Shi(石勤芳), Song-Lin Yang(杨松林), Yu-Rong Cao(曹玉蓉), Xiao-Qing Wang(王晓晴), Tao Chen(陈涛), and Yong-Hong Ye(叶永红). Chin. Phys. B, 2021, 30(4): 040702.
[13] High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion
Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪). Chin. Phys. B, 2021, 30(1): 014302.
[14] Improved spatial filtering velocimetry and its application in granular flow measurement
Ping Kong(孔平), Bi-De Wang(王必得), Peng Wang(王蓬), Zivkovic V, Jian-Qing Zhang(张建青). Chin. Phys. B, 2020, 29(7): 074201.
[15] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
No Suggested Reading articles found!