Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 083201    DOI: 10.1088/1674-1056/19/8/083201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Effect of atomic initial phase difference on spontaneous emission of an atom embedded in photonic crystal

Zhang Bing(张冰), Sun Xiu-Dong(孙秀冬), and Jiang Xiang-Qian(姜向前)
Department of Physics, Harbin Institute of Technology, Harbin 150001, China
Abstract  We investigate the effect of initial phase difference between the two excited states of a V-type three-level atom on its steady state behaviour of spontaneous emission. A modified density of modes is introduced to calculate the spontaneous emission spectra in photonic crystal. Spectra in free space are also shown to compare with that in photonic crystal with different relative positions of the excited levels from upper band-edge frequency. It is found that the initial phase difference plays an important role in the quantum interference property between the two decay channels. For a zero initial phase, destructive property is presented in the spectra. With the increase of initial phase difference, quantum interference between the two decay channels from upper levels to ground level turns to be constructive. Furthermore, we give an interpretation for the property of these spectra.
Keywords:  initial phase difference      spontaneous emission spectrum      quantum interference  
Received:  03 November 2009      Revised:  22 January 2010      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  32.70.Jz (Line shapes, widths, and shifts)  
  37.10.Vz (Mechanical effects of light on atoms, molecules, and ions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10904025 and 10674037), the National Basic Research and Development Program of China (Grant No. 2007CB307001), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20092302120024) and the Program for Excellent Team in Harbin Institute of Technology.

Cite this article: 

Zhang Bing(张冰), Sun Xiu-Dong(孙秀冬), and Jiang Xiang-Qian(姜向前) Effect of atomic initial phase difference on spontaneous emission of an atom embedded in photonic crystal 2010 Chin. Phys. B 19 083201

[1] Yablonovich E 1987 Phys. Rev. Lett. 58 2059
[2] John S and Quang T 1994 Phys. Rev. A 50 1764
[3] Jiang X Q, Jiang Y Y, Wang Y L and Sun X D 2006 Phys. Rev. A 73 033802
[4] Paspalakis E and Knight P L 1998 Phys. Rev. Lett. 81 293
[5] Wu J H, Li A J, Ding Y, Zhao Y C and Gao J Y 2005 Phys. Rev. A 72 023802
[6] Wang J, Yang D and Zhang H Z 2005 Chin. Phys. 14 323
[7] Huang X S, Xie S Y and Yang Y P 2006 Acta Phys. Sin. 55 696 (in Chinese)
[8] Martinez M A G, Herczfeld P R, Samuels C, Narducci L M and Keite C H 1997 Phys. Rev. A 55 4483
[9] Quang T, Woldeyohannes M, John S and Agarwal G S 1997 Phys. Rev. Lett. 79 5238
[10] Zhu S Y, Chen H and Huang H 1997 Phys. Rev. Lett. 79 205
[11] Ghafoor F, Zhu S Y and Zubairy M S 2000 Phys. Rev. A 62 013811
[12] Jiang X Q, Zhang B and Sun X D 2008 J. Phys. B 41 065508
[13] Foroozani N, Golshan M M and Mahjoei M 2007 Phys. Rev. A 76 015801
[14] Alzetta G, Gozzini A, Moi L and Orriols G 1976 Nuovo Cimento B 36 5
[15] Paspalakis E, Kylstra N J and Knight P L 1999 Phys. Rev. Lett. 82 2079
[16] Jia W Z and Wang S J 2009 Chin. Phys. B 18 2282
[17] Zhu S Y and Scully M O 1996 Phys. Rev. Lett. 76 388
[18] Zhu S Y, Chan R C F and Lee C P 1995 Phys. Rev. A 52 710
[19] Zhou P and Swain S 1996 Phys. Rev. Lett. 77 3995
[20] Hu Z F, Ma Y S, Deng J L, He H J and Wang Y Z 2009 Chin. Phys. B 18 199
[21] Yang L J, Zhang L S, Zhou Z H, Guo Q L and Fu G S 2008 Chin. Phys. B 17 2147
[22] Li J H, Chen A X, Liu J B and Yang X X 2006 Phys. Rev. A 74 033812
[23] Roshan S, Vahed H and Tajalli H 2007 J. Phys. B 40 2927
[24] Yang Y, Lin Z X, Zhu S Y, Chen H and Feng W G 2000 Phys. Lett. A 270 41
[25] John S and Wang J 1990 Phys. Rev. Lett. 64 2418
[26] John S and Wang J 1991 Phys. Rev. B 43 12772
[27] Paspalakis E, Angelakis D G and Knight P L 1999 Opt. Commun. 172 229
[28] Weisskopf V and Wigner E P 1930 Z. Phys. 54 63
[29] Barnett S M and Radmore P M 1997 Methods in Theoretical Quantum Optics (Oxford: Oxford University Press) p. 132
[1] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[2] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[3] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[4] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[5] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[6] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[7] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[8] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[9] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[10] Quantum interference between heralded single photon stateand coherent state
Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英). Chin. Phys. B, 2017, 26(7): 074206.
[11] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[12] Ballistic transport and quantum interference in InSb nanowire devices
Sen Li(李森), Guang-Yao Huang(黄光耀), Jing-Kun Guo(郭景琨), Ning Kang(康宁), Philippe Caroff, Hong-Qi Xu(徐洪起). Chin. Phys. B, 2017, 26(2): 027305.
[13] Tunable thermoelectric properties in bended graphene nanoribbons
Chang-Ning Pan(潘长宁), Jun He(何军), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(7): 078102.
[14] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[15] Entanglement and non-Markovianity of a multi-level atom decaying in a cavity
Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2016, 25(1): 010303.
No Suggested Reading articles found!