Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 050508    DOI: 10.1088/1674-1056/19/5/050508
GENERAL Prev   Next  

Embedding adaptive arithmetic coder in chaos-based cryptography

Li Heng-Jian(李恒建) and Zhang Jia-Shu(张家树)
Sichuan Province Key Lab of Signal & Information Processing, Southwest Jiaotong University, Chengdu 610031, China
Abstract  In this study an adaptive arithmetic coder is embedded in the Baptista-type chaotic cryptosystem for implementing secure data compression. To build the multiple lookup tables of secure data compression, the phase space of chaos map with a uniform distribution in the search mode is divided non-uniformly according to the dynamic probability estimation of plaintext symbols. As a result, more probable symbols are selected according to the local statistical characters of plaintext and the required number of iterations is small since the more probable symbols have a higher chance to be visited by the chaotic search trajectory. By exploiting non-uniformity in the probabilities under which a number of iteration to be coded takes on its possible values, the compression capability is achieved by adaptive arithmetic code. Therefore, the system offers both compression and security. Compared with original arithmetic coding, simulation results on Calgary Corpus files show that the proposed scheme suffers from a reduction in compression performance less than 12\% and is not susceptible to previously carried out attacks on arithmetic coding algorithms.
Keywords:  chaos      cryptography      compression      arithmetic coding  
Received:  23 August 2009      Revised:  19 November 2009      Accepted manuscript online: 
PACS:  05.45.Vx (Communication using chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~60971104), the Basic Research Foundation of Sichuan Province, China (Grant No.~2006J013-011), and the Outstanding Young Researchers Foundation of Sichuan Province, China (Grant No.~09ZQ026-091).

Cite this article: 

Li Heng-Jian(李恒建) and Zhang Jia-Shu(张家树) Embedding adaptive arithmetic coder in chaos-based cryptography 2010 Chin. Phys. B 19 050508

[1] Qiu S S and Xiang F 2008 Acta Phys. Sin. 57 6132 (in Chinese)
[2] Zhou Q, Hu Y and Liao X F 2008 Acta Phys. Sin. 57 5413 (in Chinese)
[3] Xu S J, Wang J Z and Yang S X 2008 Chin. Phys. B 17 4027
[4] Zheng F, Tian X J, Li X Y and Wu B 2008 Chin. Phys. B 17 1685
[5] Baptista M S 1998 Phys. Lett. A 240 50
[6] Wong K W 2002 Phys. Lett. A 298 238
[7] Wong K W 2003 Phys. Lett. A 307 292
[8] Li S J, Chen G R, Wong K W, Mou X Q and Cai Y L 2004 Phys. Lett. A 332 368
[9] Alvarez G, Montoya F, Romera M and Pastor G 2003 Phys. Lett. A 311 172
[10] Alvarez G, Montoya F, Romera M and Pastor G 2004 Phys. Lett. A 326 211
[11] Wong K W, Man K P, Li S J and Liao X F 2005 Circuits, Systems and Signal Processing 24 571
[12] Wei J, Liao X F, Wong K W, Zhou T and Deng Y G 2006 Phys. Lett. A 354 101
[13] Xiao D, Liao X F and Wong K W 2006 IEEE Trans. Circuits Systems II 53 502
[14] Wu C and Kuo C 2005 IEEE Trans. Multimedia 7 828
[15] Wen J, Kim H and Villasenor J D 2006 IEEE Trans. Signal Process. Lett. 13 69
[16] Bose R and Pathak S 2006 IEEE Trans. Circuits Systems-1 53 848
[17] Li H J and Zhang J S 2009 Commun Nonlinear Sci. Numer. Simulat. 14 4304
[18] Jakimoski G and Subbalakshmi K P 2008 IEEE Trans. Multimedia 10 330
[19] Zhou J T and Au O 2008 IEEE Trans. Circuits Systems I 55 3368
[20] Wong K W and Yuen C H 2008 IEEE Trans. Circuits Systems II 55 1193
[21] Witten I H, Neal R and Cleary J G 1987 Commun. ACM. 30 520
[22] Zhang J S, Wang X M and Zhang W F 2007 Phys. Lett. A 362 439
[23] Said A 2004 Hewlett-Packard Laboratories Report, HPL--2004--75, Palo Alto, CA.http://www.hpl.hp.com/techreports/2004/HPL-2004-75.pdf
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[3] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Nanobubbles produced by hydraulic air compression technique
Xiaodong Yang(杨晓东), Qingfeng Yang(杨庆峰), Limin Zhou(周利民),Lijuan Zhang(张立娟), and Jun Hu(胡钧). Chin. Phys. B, 2022, 31(5): 054702.
[7] Quantum private comparison of arbitrary single qubit states based on swap test
Xi Huang(黄曦), Yan Chang(昌燕), Wen Cheng(程稳), Min Hou(侯敏), and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2022, 31(4): 040303.
[8] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[9] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[10] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[11] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[12] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[13] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[14] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[15] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
No Suggested Reading articles found!