Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 040503    DOI: 10.1088/1674-1056/19/4/040503
GENERAL Prev   Next  

Stochastic resonance in a time-delayed asymmetric bistable system with mixed periodic signal

Guo Yong-Feng(郭永峰),Xu Wei(徐伟), and Wang Liang(王亮)
Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  This paper studies the phenomenon of stochastic resonance in an asymmetric bistable system with time-delayed feedback and mixed periodic signal by using the theory of signal-to-noise ratio in the adiabatic limit. A general approximate Fokker--Planck equation and the expression of the signal-to-noise ratio are derived through the small time delay approximation at both fundamental harmonics and mixed harmonics. The effects of the additive noise intensity Q, multiplicative noise intensity D, static asymmetry r and delay time τ on the signal-to-noise ratio are discussed. It is found that the higher mixed harmonics and the static asymmetry r can restrain stochastic resonance, and the delay time τ can enhance stochastic resonance. Moreover, the longer the delay time τ is, the larger the additive noise intensity Q and the multiplicative noise intensity D are, when the stochastic resonance appears.
Keywords:  stochastic resonance      time-delayed feedback      mixed periodic signal      signal-to-noise ratio  
Received:  20 June 2009      Revised:  07 July 2009      Accepted manuscript online: 
PACS:  05.40.Ca (Noise)  
  02.50.Fz (Stochastic analysis)  
  05.10.Gg (Stochastic analysis methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~10872165 and 10902085).

Cite this article: 

Guo Yong-Feng(郭永峰),Xu Wei(徐伟), and Wang Liang(王亮) Stochastic resonance in a time-delayed asymmetric bistable system with mixed periodic signal 2010 Chin. Phys. B 19 040503

[1] Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453
[2] Nicolis C and Nicolis G 1981 Tellus. 33 225
[3] Nicolis C 1982 Tellus. 34 1
[4] Fauve S and Heslot F1983 Phys. Lett. A 97 5
[5] McNamara B, Wiesenfeld K and Roy R 1988 Phys. Rev. Lett. 60 2626
[6] McNamara B and Wiesenfeld K 1988 Phys. Rev. A 39 4854
[7] Dykman M I, Mannella R, McClintock P V E and Stocks N G 1990 Phys. Rev. Lett. 65 2606
[8] Hu G, Nicolis G and Nicolis C 1990 Phys. Rev. A 42 2030
[9] Hu G 1994 Stochastic Forces and Nonlinear System (Shanghai: Shanghai Scientific and Technological Education Publishing House) (in Chinese)
[10] Zhou T, Moss F and Jung P 1990 Phys. Rev. A 42 3161
[11] Gammaitoni L, H?nggi P, Jung P and Marchrsoni F 1998 Rev. Mod. Phys. 70 223
[12] Li J H, Huang Z C and Wang C Y 1998 Acta Phys. Sin. 47 382 (in Chinese)
[13] Xu W, Jin Y F, Li W and Ma S J 2005 Chin. Phys. 14 1077
[14] Fuentes M A, Toral R and Wio H S 2001 Phys. A 295 114
[15] Jia Y, Yu S N and Li J R 2000 Phys. Rev. E 62 1869
[16] Chen L M, Cao L and Wu D J 2007 Chin. Phys. 16 123
[17] Luo X and Zhu S Q 2004 Chin. Phys. 13 1201
[18] Jung P and Talkner P 1995 Phys. Rev. E 51 2640
[19] Gitterman M 2004 J. Phys. A: Math. Gen. 37 5729
[20] Ginzburg S L and Pustovoit M A 2002 Phys. Rev. E 66 021107
[21] Jin Y F, Xu W and Xu M 2005 Chin. Phys. Lett. 22 1061
[22] Grigorenko A N, Nikitin P I and Roschepkin G V 1997 J. Exp. Theor. Phys. 85 343
[23] Chialvo D R, Calvo O, Gonzalez D L, Piro O and Savino G V 2002 Phys. Rev. E 65 050902
[24] Lopera A, BuldúJ M, Torrent M C, Chialvo D R and Ojalvo J G 2006 Phys. Rev. E 73 021101
[25] Mackey M C and Nechaeva I G 1995 Phys. Rev. E 52 3366
[26] Frank T D 2004 Phys. Rev. E 69 061104
[27] Frank T D 2005 Phys. Rev. E 71 031106
[28] Guillouzic S, Heureux I L and Longtin A 1999 Phys. Rev. E 59 3970
[29] Guillouzic S, Heureux I L and Longtin A 2000 Phys. Rev. E 61 4906
[30] Wu D and Zhu S Q 2007 Phys. Lett. A 363 202
[31] Tsimring L S and Pikovsky A 2001 Phys. Rev. Lett. 87 250602
[32] Huber D and Tsimring L S 2003 Phys. Rev. Lett. 91 260601
[1] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[2] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[3] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[4] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[5] Signal-to-noise ratio of Raman signal measured by multichannel detectors
Xue-Lu Liu(刘雪璐), Yu-Chen Leng(冷宇辰), Miao-Ling Lin(林妙玲), Xin Cong(从鑫), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2021, 30(9): 097807.
[6] A sign-function receiving scheme for sine signals enhanced by stochastic resonance
Zhao-Rui Li(李召瑞), Bo-Hang Chen(陈博航), Hui-Xian Sun(孙慧贤), Guang-Kai Liu(刘广凯), and Shi-Lei Zhu(朱世磊). Chin. Phys. B, 2021, 30(8): 080502.
[7] Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康). Chin. Phys. B, 2021, 30(6): 060502.
[8] Time-varying coupling-induced logical stochastic resonance in a periodically driven coupled bistable system
Yuangen Yao(姚元根). Chin. Phys. B, 2021, 30(6): 060503.
[9] Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR
Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海). Chin. Phys. B, 2021, 30(5): 050708.
[10] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[11] Novel Woods-Saxon stochastic resonance system for weak signal detection
Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2020, 29(4): 040503.
[12] Noise properties of multi-combination information in x-ray grating-based phase-contrast imaging
Wali Faiz, Ji Li(李冀), Kun Gao(高昆), Zhao Wu(吴朝), Yao-Hu Lei(雷耀虎), Jian-Heng Huang(黄建衡), Pei-Ping Zhu(朱佩平). Chin. Phys. B, 2020, 29(1): 014301.
[13] Stochastic resonance in an under-damped bistable system driven by harmonic mixing signal
Yan-Fei Jin(靳艳飞). Chin. Phys. B, 2018, 27(5): 050501.
[14] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[15] Stochastic resonance and synchronization behaviors of excitatory-inhibitory small-world network subjected to electromagnetic induction
Xiao-Han Zhang(张晓函), Shen-Quan Liu(刘深泉). Chin. Phys. B, 2018, 27(4): 040501.
No Suggested Reading articles found!