Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 040308    DOI: 10.1088/1674-1056/19/4/040308
GENERAL Prev   Next  

Perturbation theory of von Neumann entropy

Chen Xiao-Yu(陈小余)
College of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
Abstract  In quantum information theory, von Neumann entropy plays an important role; it is related to quantum channel capacities. Only for a few states can one obtain their entropies. In a continuous variable system, numeric evaluation of entropy is not easy due to infinite dimensions. We develop the perturbation theory for systematically calculating von Neumann entropy of a non-degenerate system as well as a degenerate system.
Keywords:  von Neumann entropy      perturbation      degenerate state  
Received:  11 April 2009      Revised:  05 June 2009      Accepted manuscript online: 
PACS:  03.65.Fd (Algebraic methods)  
  03.67.-a (Quantum information)  
  02.10.Yn (Matrix theory)  
  02.10.Ud (Linear algebra)  
  02.30.Tb (Operator theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~60972071), Science and Technology Program of Zhejiang Province, China (Grant No.~2009C31060).

Cite this article: 

Chen Xiao-Yu(陈小余) Perturbation theory of von Neumann entropy 2010 Chin. Phys. B 19 040308

[1] Schumacher B 1995 Phys. Rev. A 51 2738
[2] Holevo A S 1998 Russian Math. Surveys 53 1295
[2a] Holevo A S arXiv.org/quant-ph/9808023
[3] Schumacher B and Westmorland M D 1997 Phys. Rev. A 56 131
[4] Devetak I 2005 IEEE Trans. Inf. Theory 51 44
[5] Barnum H, Knill M and Nielsen M A 2000 IEEE Trans. Inf. Theory 46 1317
[6] Gao Y F, Feng J and Wang J S 2005 Chin. Phys. 14 980
[7] Zhu X and Tong P Q 2008 Chin. Phys. B 17 1623
[8] Reed M and Simon B 1978 Methods of Mathematical Physics; Vol.4, Analysis of Operators (New York: Academic Press)
[9] Vedral V, Plenio M B, Jacobs K and Knight P L 1997 Phys. Rev. A 56 4452
[10] Chen X Y 2009 J. Phys. B 42 075502
[1] Simulation of detection and scattering of sound waves by the lateral line of a fish
V M Adamyan, I Y Popov, I V Blinova, and V V Zavalniuk. Chin. Phys. B, 2022, 31(2): 024301.
[2] Stochastic optimal control for norovirus transmission dynamics by contaminated food and water
Anwarud Din and Yongjin Li(黎永锦). Chin. Phys. B, 2022, 31(2): 020202.
[3] Identification of unstable individuals in dynamic networks
Dongli Duan(段东立), Tao Chai(柴涛), Xixi Wu(武茜茜), Chengxing Wu(吴成星), Shubin Si(司书宾), and Genqing Bian(边根庆). Chin. Phys. B, 2021, 30(9): 090501.
[4] Breather solutions of modified Benjamin-Bona-Mahony equation
G T Adamashvili. Chin. Phys. B, 2021, 30(2): 020503.
[5] Dynamics analysis of a 5-dimensional hyperchaotic system with conservative flows under perturbation
Xuenan Peng(彭雪楠), Yicheng Zeng(曾以成), and Qi Xie(谢奇). Chin. Phys. B, 2021, 30(10): 100502.
[6] Identification of key residues in protein functional movements by using molecular dynamics simulations combined with a perturbation-response scanning method
Jun-Bao Ma(马君宝), Wei-Bu Wang(王韦卜), and Ji-Guo Su(苏计国). Chin. Phys. B, 2021, 30(10): 108701.
[7] Growth induced buckling of morphoelastic rod in viscous medium
Yitong Zhang(张一桐), Shuai Zhang(张帅), Peng Wang(王鹏). Chin. Phys. B, 2020, 29(5): 054501.
[8] The (3+1)-dimensional generalized mKdV-ZK equation for ion-acoustic waves in quantum plasmas as well as its non-resonant multiwave solution
Xiang-Wen Cheng(程香雯), Zong-Guo Zhang(张宗国), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2020, 29(12): 124501.
[9] Dependence of photoelectron-momentum distribution of H2+ molecule on orientation angle and laser ellipticity
Hong-Dan Zhang(张宏丹), Si-Qi Zhang(张思琪), Lei Ji(纪磊), Qi Zhen(甄琪), Jing Guo(郭静), Xue-Shen Liu(刘学深). Chin. Phys. B, 2019, 28(5): 053201.
[10] Discrete symmetrical perturbation and variational algorithm of disturbed Lagrangian systems
Li-Li Xia(夏丽莉), Xin-Sheng Ge(戈新生), Li-Qun Chen(陈立群). Chin. Phys. B, 2019, 28(3): 030201.
[11] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[12] Effect of transient space-charge perturbation on carrier transport in high-resistance CdZnTe semiconductor
Yu Guo(郭玉), Gang-Qiang Zha(查钢强), Ying-Rui Li(李颖锐), Ting-Ting Tan(谭婷婷), Hao Zhu(朱昊), Sen Wu(吴森). Chin. Phys. B, 2019, 28(11): 117201.
[13] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
[14] Effects of resonant magnetic perturbation on the instability of single tearing mode with non-shear flow
Le Wang(王乐), Ming Yang(阳明), Wen-Bin Lin(林文斌). Chin. Phys. B, 2019, 28(1): 015203.
[15] Ground-state energy of beryllium atom with parameter perturbation method
Feng Wu(吴锋), Lijuan Meng(孟丽娟). Chin. Phys. B, 2018, 27(9): 093101.
No Suggested Reading articles found!