Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 100501    DOI: 10.1088/1674-1056/19/10/100501
GENERAL Prev   Next  

A new four-dimensional hyperchaotic Chen system and its generalized synchronization

Jia Li-Xin(贾立新), Dai Hao(戴浩), and Hui Meng(惠萌)
State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
Abstract  Based on the Chen chaotic system, a new four-dimensional hyperchaotic Chen system is constructed, and the basic dynamic behaviours of the system were studied, and the generalized synchronization has been observed in the coupled four-dimensional hyperchaotic Chen system with unknown parameters. The Routh–Hurwitz theorem is used to derive the conditions of stability of this system. Furthermore based on Lyapunov stability theory, the control laws and adaptive laws of parameters are obtained to make generalized synchronization of the coupled new four-dimensional hyperchaotic Chen systems. Numerical simulation results are presented to illustrate the effectiveness of this method.
Keywords:  hyperchaotic Chen system      generalized synchronization      Lyapunov stability theory  
Received:  06 April 2010      Revised:  27 April 2010      Accepted manuscript online: 
PACS:  02.30.Yy (Control theory)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Xt (Synchronization; coupled oscillators)  

Cite this article: 

Jia Li-Xin(贾立新), Dai Hao(戴浩), and Hui Meng(惠萌) A new four-dimensional hyperchaotic Chen system and its generalized synchronization 2010 Chin. Phys. B 19 100501

[1] Lorenz E N 1963 wxJ. Atmos. Sci.20 131
[2] Li J F, Li N, Liu Y P and Gan Y 2009 wxActa Phys. Sin.58 779 (in Chinese)
[3] Wang X Y and Meng J 2008 wxActa Phys. Sin.57 726 (in Chinese)
[4] Liu S, Liu B and Shi P M 2009 wxActa Phys. Sin.58 4383 (in Chinese)
[5] Lü J H and Chen G R 2002 wxInt. J. Bifurc. Chaos12 659
[6] Liu C X, Liu T, Liu L and Liu K 2004 wxChaos, Solitons and Fractals 22 1031
[7] Liu M H and Feng J C 2009 wxActa Phys. Sin.58 4457 (in Chinese)
[8] Cang S J, Chen Z Q and Yuan Z Z 2008 wxActa Phys. Sin.57 1493 (in Chinese)
[9] Wang X Y and Wang M J 2007 wxActa Phys. Sin.56 5136 (in Chinese)
[10] Cai G L and Huang J J 2006 wxActa Phys. Sin.55 3997 (in Chinese)
[11] Liu Y Z, Jiang C S, Lin C S and Jiang Y M 2007 wxChin. Phys.16 660
[12] Tang L R, Li J and Fan B 2009 wxActa Phys. Sin.58 1446 (in Chinese)
[13] Pecora L M and Carroll T L 1990 wxPhys. Rev. Lett.64 821
[14] Cai N, Jing Y W and Zhang S Y 2009 wxActa Phys. Sin.58 802 (in Chinese)
[15] Liu F C and Song J Q 2008 wxJournal of Dynamics and Control6 130 endfootnotesize
[1] Chaotic synchronization in Bose–Einstein condensate of moving optical lattices via linear coupling
Zhang Zhi-Ying (张志颖), Feng Xiu-Qin (冯秀琴), Yao Zhi-Hai (姚治海), Jia Hong-Yang (贾洪洋). Chin. Phys. B, 2015, 24(11): 110503.
[2] Stability analysis and control synthesis of uncertain Roesser-type discrete-time two-dimensional systems
Wang Jia (王佳), Hui Guo-Tao (会国涛), Xie Xiang-Peng (解相朋). Chin. Phys. B, 2013, 22(3): 030206.
[3] Generalized synchronization between different chaotic maps via dead-beat control
Grassi G . Chin. Phys. B, 2012, 21(5): 050505.
[4] Adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions
Dai Hao (戴浩), Jia Li-Xin (贾立新), Zhang Yan-Bin (张彦斌). Chin. Phys. B, 2012, 21(12): 120508.
[5] Hölder continuity of generalized chaos synchronization in complex networks
Hu Ai-Hua(胡爱花), Xu Zhen-Yuan(徐振源), and Guo Liu-Xiao(过榴晓) . Chin. Phys. B, 2011, 20(9): 090511.
[6] Generalized synchronization of two unidirectionally coupled discrete stochastic dynamical systems
Yuan Zhi-Ling(袁志玲), Xu Zhen-Yuan(徐振源), and Guo Liu-Xiao(过榴晓) . Chin. Phys. B, 2011, 20(7): 070503.
[7] Global exponential synchronization between Lü system and Chen system with unknown parameters and channel time-delay
Ma Tie-Dong (马铁东), Fu Jie (浮洁). Chin. Phys. B, 2011, 20(5): 050511.
[8] A new three-dimensional chaotic system and its modified generalized projective synchronization
Dai Hao(戴浩), Jia Li-Xin(贾立新), Hui Meng(惠萌), and Si Gang-Quan(司刚全) . Chin. Phys. B, 2011, 20(4): 040507.
[9] Generalized spatiotemporal chaos synchronization of the Ginzburg–Landau equation
Jin Ying-Hua(金英花) and Xu Zhen-Yuan(徐振源) . Chin. Phys. B, 2011, 20(12): 120505.
[10] A new four-dimensional hyperchaotic Lorenz system and its adaptive control
Si Gang-Quan(司刚全), Cao Hui(曹晖), and Zhang Yan-Bin(张彦斌). Chin. Phys. B, 2011, 20(1): 010509.
[11] Projective synchronization of spatiotemporal chaos in a weighted complex network
Lü Ling(吕翎), Chai Yuan(柴元), and Luan Ling(栾玲). Chin. Phys. B, 2010, 19(8): 080506.
[12] Generalized chaos synchronization of a weighted complex network with different nodes
Lü Ling(吕翎), Li Gang(李钢), Guo Li(郭丽), Meng Le(孟乐),Zou Jia-Rui(邹家蕊), and Yang Ming(杨明). Chin. Phys. B, 2010, 19(8): 080507.
[13] Synchronization of hyperchaotic Chen systems: a class of the adaptive control approach
Wei Wei(魏伟), Li Dong-Hai(李东海), and Wang Jing(王京). Chin. Phys. B, 2010, 19(4): 040507.
[14] $\mathscr{L}$2–$\mathscr{L}$$\infty$ learning of dynamic neural networks
Choon Ki Ahn. Chin. Phys. B, 2010, 19(10): 100201.
[15] Adaptive generalized synchronization between Chen system and a multi-scroll chaotic system
Chen Long(谌龙), Shi Yue-Dong(史跃东), and Wang De-Shi(王德石). Chin. Phys. B, 2010, 19(10): 100503.
No Suggested Reading articles found!